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Introduction

 We are living in an era of big multimedia data:
— 300 hours of video are uploaded to YouTube every minute;
— social media users are posting 12 million videos on Twitter every day;
— video will account for 80% of all the world's internet traffic by 2019.
* Video search is becoming a valuable source for
acquiring information and knowledge.

e Existing large-scale methods are still based on text-
to-text matching (user text query to video metadata),

which may fail in many scenarios.

— 66% videos on the social media site Twitter are not associated with
hashtag or mention [Vandersmissen et al. 2014]
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— 66% videos on the social media site Twitter are not associated with
hashtag or mention [Vandersmissen et al. 2014]
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— Much more video captured by mobile phones, surveillance cameras and
wearable devices does not have any metadata at all.



Introduction

We are living in an era of big multimedia data:

— 300 hours of video are uploaded to YouTube every minute;
— social media users are posting 12 millions videos on Twitter every day;
— video will account for 80% of all the world's internet traffic by 2019.

Video search is becoming a valuable source for acquiring
information and knowledge.

Existing large-scale methods are still based on text-to-
How to acquire information or knowledge in video nay
if there is no way to find it?

— 66% videos on a social media site of Twitter are not associated with
meaningful metadata (hashtag or a mention)[Vandersmissen et al. 2014]

— Much video captured by mobile phones, surveillance cameras and wearable
devices does not have any metadata at all.



Introduction

* This thesis addresses a fundamental research question:

how to satisfy information needs about video content at a
very large scale?

* We embody this question into a concrete content-based
video retrieval problem which aims at searching videos
solely based on content, without using any user-generated
metadata (e.g. titles or descriptions).

 We focus on two types of queries: semantic query and
hybrid query.



Semantic Query:

Information need:
Find videos about birthday party.
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Hybrid Query:

Hybrid Query

Bir‘Thddy song

text&video-to-video search
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Example Queries

* Inresponse to a, our system should be able to:
— find simple objects, actions, speech words;
— search complex activities;

Information need:
people running away after an explosion
in urban areas.

Boolean logical operator

Query:

urban_scene / -
AND (walking OR running)
OR fire OR smoke

OR audio:explosion

TBefore(audio:explosion, running)

—

Temporal operators



Example Queries

e Using the query, our system should be able to
— find simple objects, actions, speech words;
— search complex activities;

— answer questions by/in videos.

, How to learn Tai Chi Chuan
Information need:

What are they doing?

Query:

person AND action
AND

12



Challenges

The problem was initiated by a TRECVID task Multimedia Event
Detection (MED) in 2012 (common evaluation benchmark).

— State-of-the-art accuracy is very low.

— Large-scale system can only handle 200k videos (5 min to search).

For this understudied problem, this thesis confronts the following
research challenges:

— Algorithms to boost state-of-the-art accuracy.
— Efficient methods to search billions of videos.



Preliminary Results

We proposed a novel and practical solution that can

— substantially boost state-of-the-art accuracy across a number of
datasets.

— Scale up the search to hundreds of millions of Internet videos.
* 0.2 second to process a semantic query on 100 million videos
* 1 second to process a hybrid query on 1 million videos.
Within a system called E-Lamp Lite, we implemented the first
of its kind large-scale multimedia search engine for Internet
videos:

— Achieved the best accuracy in TRECVID MED zero-example search
2013, 2014 and 2015, the most representative task on this task. 3x
better than the runner-up in 2014.

— To the best of our knowledge, it is the first content-based retrieval
system that can search a collection of 100 million videos.
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Key Contributions:
First-of-its-kind Framework

* The first-of-its-kind framework for web-scale content-based search
over hundreds of millions of Internet videos [ICMR’15]. The
proposed framework supports text-to-video, video-to-video, and
text&video-to-video search [MM’12]. (Chapter 1 and 5)

[ICMR15] Lu Jiang, Shoou-I Yu, Deyu Meng, Teruko Mitamura, Alexander Hauptmann.
Bridging the Ultimate Semantic Gap: A Semantic Search Engine for Internet Videos. In
ACM International Conference on Multimedia Retrieval (ICMR), 2015.

[MM12] Lu Jiang, Alexander Hauptmann, Guang Xiang. Leveraging High-level and Low-
level Features for Multimedia Event Detection. In ACM Multimedia (MM), 2012.
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Key Contributions:
Self-paced curriculums learning theory

e The first-of-its-kind framework for web-scale content-based search
over hundreds of millions of Internet videos [ICMR’15]. The
proposed framework supports text-to-video, video-to-video, and
text&video-to-video search [MM’12].

A novel theory about self-paced curriculums learning and its
application on robust concept detector training [NIPS’14, AAAI'15].
(Chapter?7)

[AAAI15] Lu Jiang, Deyu Meng, Qian Zhao, Shiguang Shan, Alexander Hauptmann. Self-
paced Curriculum Learning. In Conference on Artificial Intelligence (AAAI), 2015.

[NIPS14] Lu Jiang, Deyu Meng, Shoou-I Yu, Zhen-Zhong Lan, Shiguang Shan, Alexander
Hauptmann. Self-paced Learning with Diversity. In Neural Information Processing Systems
(NIPS), 2014.



Key Contributions:
Self-paced curriculums learning theory

e The first-of-its-kind framework for web-scale content-based search
over hundreds of millions of Internet videos [ICMR’15]. The
proposed framework supports text-to-video, video-to-video, and
text&video-to-video search [MM’12].

A novel theory about self-paced curriculums learning and its
application on robust concept detector training [NIPS’14, AAAI'15].
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Key Contributions:
Reranking

* The first-of-its-kind framework for web-scale content-based search
over hundreds of millions of Internet videos [ICMR’15]. The
proposed framework supports text-to-video, video-to-video, and
text&video-to-video search [MM’12].

* A novel theory about self-paced curriculums learning and its
application on robust concept detector training [NIPS’14, AAAI'15].

* Novel reranking algorithms for improving performance. They have
concise mathematical objectives to optimize and useful properties
that can be theoretically verified [MM’14, ICMR’14]. (Chapter6)

[MM14] Lu Jiang, Deyu Meng, Teruko Mitamura, Alexander Hauptmann. Easy Samples First:
Selfpaced Reranking for Zero-Example Multimedia Search. In ACM Multimedia (MM), 2014.
[ICMR14] Lu Jiang, Teruko Mitamura, Shoou-I Yu, Alexander Hauptmann. Zero-Example
Event Search using MultiModal Pseudo Relevance Feedback. In ACM International
Conference on Multimedia Retrieval (ICMR), 2014.
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* Novel reranking algorithms for improving performance. They have
concise mathematical objectives to optimize and useful properties
that can be theoretically verified [MM’14, ICMR’14]. (Chapter6)

[MM14] Lu Jiang, Deyu Meng, Teruko Mitamura, Alexander Hauptmann. Easy Samples First:
Selfpaced Reranking for Zero-Example Multimedia Search. In ACM Multimedia (MM), 2014.
[ICMR14] Lu Jiang, Teruko Mitamura, Shoou-I Yu, Alexander Hauptmann. Zero-Example
Event Search using MultiModal Pseudo Relevance Feedback. In ACM International

Conference on Multimedia Retrieval (ICMR), 2014.
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Key Contributions:
Scalable Indexing Method

* The first-of-its-kind framework for web-scale content-based search
over hundreds of millions of Internet videos [ICMR’15]. The
proposed framework supports text-to-video, video-to-video, and
text&video-to-video search [MM’12].

* A novel theory about self-paced curriculums learning and its
application on robust concept detector training [NIPS’14, AAAI'15].

* Novel reranking algorithms for improving performance. They have
concise mathematical objectives to optimize and useful properties
that can be theoretically verified [MM’14, ICMR’14].

* A concept adjustment method representing a video by a few salient
and consistent concepts that can be efficiently indexed by the

modified inverted index [MM’15] (Chapter3)

[MM15] Lu Jiang, Shoou-I Yu, Deyu Meng, Yi Yang, Teruko Mitamura, Alexander
Hauptmann. Fast and Accurate Content-based Semantic Search in 100M Internet Videos.
In ACM Multimedia (MM), 2015
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and consistent concepts that can be efficient
modified inverted index [MM’15] (Chapter3)

ly indexed by the

[MM15] Lu Jiang, Shoou-I Yu, Deyu Meng, Yi Yang, Teruko Mitamura, Alexander

Hauptmann. Fast and Accurate Content-based Semantic Search in 100M Internet Videos.

In ACM Multimedia (MM), 2015
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Thesis Statement

* In this thesis, we approach a fundamental problem of
searching information in video content at a very large
scale. We address the problem by proposing an
accurate, efficient, and scalable method that can
search the content of billions of videos by semantic
visual/acoustic concepts, speech, visible texts, video
examples, or any combination of these elements.

24
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Introduction to

Indexing Semantic Features

 Semantic features include ASR (speech), OCR (visible text),
visual concepts and audio concepts.

* Indexing textual features like ASR and OCR is well studied.

* Indexing semantic concepts is well studied.

* Existing methods index the raw detection score of
semantic concepts by dense matrices [Mazloom et al.
2014][Wu et al. 2014][Lee et al. 2014]

* We propose a scalable semantic concept indexing method.
The key is a novel method called concept adjustment.

Masoud Mazloom, Xirong Li, and Cees GM Snoek. Few-example video event retrieval using tag propagation. In
ICMR, 2014.

Shuang Wu, Sravanthi Bondugula, Florian Luisier, Xiaodan Zhuang, and Pradeep Natarajan. Zero-shot event
detection using multi-modal fusion of weakly supervised concepts. In CVPR, 2014.

Hyungtae Lee. Analyzing complex events and human actions in” in-the-wild” videos. In UMD Ph.D Theses,and
Dissertations, 2014.



Method Overview

Inverted List for
concept terrier

Concept relation graph
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axtrartinn

steps in the offline video indexing.
raw score representation

* Represent raw video (or video clip) by low-level features.

* Semantic concept detectors are of limited accuracy. The raw
detections are meaningful but very noisy.

28



Method Overview
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2) Concept detection

3) Concept Adjustment

* The raw score representation has two problems:

 Distributional inconsistency: every video has every concept in the

vocabulary (with a small but nonzero score);

* Logical inconsistency: a video may contain a “terrier” but not a “dog”.

d)inverted Indexing

* To address the problems, we introduce a novel step called concept
adjustment which represents a video by a few salient and logically

consistent visual/audio concepts.

29



Concept Adjustment Model

 The proposed adjustment model is: distributional

consistency

1
arg min S|V — HD)5 4 9(via,p)

ve[o,1)m 2
subject to logical consistency

where v € R is the adjusted concept score. f,( D) is a pooling on the raw
detection score matrix D : each row corresponds to a shot and each column
corresponds to a concept.

* Our goalis to generate video representations that tends to be similar to the
underlying concept representation in terms of the distributional and logical
consistency.

30



Concept Adjustment Model:
Distributional Consistency

* Our general implementation:

q
g(via, B) = afllvli+(1—a) Y By/aillv]e,
[=1

— Whena =1 —> concepts are independent.

— Whena =0 —> groups of concepts frequently co-occur, e.g. sky/cloud,
beach/ocean/waterfront, and table/chair. Multimodal concepts
baby/baby_crying.

— When « € (0,1) = only few concepts in a co-occurring group are nonzero
[Simon et al. 2013].

The choice of the model parameters depends on the underlying distribution of
the semantic concepts in the dataset.

Noah Simon, Jerome Friedman, Trevor Hastie, and Robert Tibshirani. A sparse group lasso. Journal of Computational and Graphical
Statistics, 22(2):231-245,2013.



Concept Adjustment Model:
Logical Consistency

Definition 3.1. A HEX graph G = (N, E, E,) is a graph consisting of a set of nodes
N = {n1, -+ ,nn}, directed edges E, € N x N and undirected edges E. € N x N
such that the subgraph Gy = (N.E}y) is a directed acyclic graph and the subgraph
Ge = (N, E¢) has no self-loop.  [Deng et al, 2014 ]

Concept relation graph subsumption
=" animal 5 blank~ W Vdos = Vanimal
;/ subsumption "\ frame

! N Theorem 3.3. The optimal solutions of Eq. (3.1) (before or after normalization) is

~ P ‘ Vanimal T Ublank_frame S 1
™~ -
S -

~— _ _— - Vanimal, Ublank_frame € {07 1}

R

Integer programming
Jia Deng, Nan Ding, Yangqing Jia, Andrea Frome, Kevin Murphy, Samy Bengio, L.
Yuan Li, Hartmut Neven, and Hartwig Adam. Large-scale object classification solved by m|x-|nteger toolbox or by

using label relation graphs. In ECCV, 2014. constraint relaxation. 32




Indexing Semantic Features
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* Finally, the adjusted concept representation is indexed by an inverted index.
The index structure needs to be modified to account for:

* Indexing real-valued concepts
* Indexing the shot-level scores
e Supporting Boolean logical and temporal operators.

Detailed methods are in Chapter 3 33



Experiments on MED

Dataset: MED13Test and MED14Test (around 25,000 videos).
Each set contains 20 events.

Official evaluation metric: Mean Average Precision (MAP)

Supplementary metrics:

— Mean Reciprocal Rank = (1/rank of the first relevant
sample)[Voorhees, 1999]

— Precision@20
— MAP@20

Configurations:
— NIST’s HEX graph is used for IACC;
— We build the HEX graphs for the rest of the semantic concept features.
— Raw prediction scores of the 3000+ concepts trained in Chapter 7.

E.M. Voorhees. Proceedings of the 8th Text Retrieval Conference. TREC-8 Question Answering Track Report. 1999



Experiments on MED

Comparison of the raw and the adjusted representation

baseline Method Evaluation Metric

e 020 MRR MAP@20
MED13 Raw R 312 0.728 00.230
MED13 Adjusted 6] 325 0.680 0.247
MED14 Raw 3571 233 0.610 0.155
MED14 Adjusted ! 2. 0.540 0.144

33x smaller index size comparable
performances

The accuracy of the proposed method is comparable to that
of the baseline method.
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Summary of
Indexing Semantic Features

* We proposed a scalable semantic concept indexing methods that
extends the current scale of video search by a few orders of
magnitude while maintaining state-of-the-art retrieval
performance.

 The key is a novel step called concept adjustment that can
represent a video by a few salient and consistent concepts which
can be efficiently indexed by a modified inverted index.
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Semantic Search:
Semantic Query Generation

* (1) Semantic query generation: how to map out-of-
vocabulary query words to the concepts in our vocabulary?

user query

Making a sandwich

-

generated query

food, bread, cheese, kitchen,
cooking, room, lunch, dinner;

— The key is to measure the similarity between a query word and a
concept in the vocabulary:

e Exact word matching
* WordNet Similarity: structural depths in WordNet taxonomy.

» Wikipedia Point-wise Mutual Information (PMI): calculate the mutual
information of two words in Wikipedia.

 Word embedding mapping: word distance in a learned embedding space
in Wikipedia by word2vec.



Semantic Query Generation

 We empirically study the following methods.

MAP comparison on MED13Test and MED14Test datasets

Individual methods

Mapping Method

Exact Word Matching
WordNet

PMI

Word Embedding

Mapping Fusion

/

are comparable.
MAP

13Test 14Test Time (s)

22.20
0.48

10.22 9.38

Fusion improves the mapping results

40



Semantic Search:
Multimodal Search

* (2) Retrieval methods: what retrieval model to use for which modality?

— Existing work [Dalton et al. 2013, Younessian et al 2012, Wu et al 2014] did
not fully investigate the retrieval model’s impact on multi-modalities.

— We studied classical four retrieval models over three modalities: ASR, OCR,
and semantic concepts
* Vector Space Model (VSM): tf and tf-idf representations.
* BM25
* Language Model-JM Smoothing (LM-JM)
* Language Model-Dirichlet Smoothing (LM-DL)

— We found retrieval models have substantial impacts to the search result.
* For ASR, LM-JM works the best. More than 1.5x better than the second best model.

* For semantic concepts and OCR, BM25 seems to be a robust and accurate retrieval
model.

Ehsan Younessian, Teruko Mitamura, and Alexander Hauptmann. Multimodal knowledge-based analysis in multimedia event detection. In ICMR, 2012.
Jeffrey Dalton, James Allan, and Pranav Mirajkar. Zero-shot video retrieval using content and concepts. In CIKM, 2013.

Shuang Wu, Sravanthi Bondugula, Florian Luisier, Xiaodan Zhuang, and Pradeep Natarajan. Zero-shot event detection using multi-modal fusion of weakly
supervised concepts. In CVPR, 2014.



Summary of Semantic Search

 We empirically studied the semantic query generation
and retrieval methods. We found that:

— The fusion of mapping methods perform better than any
individual methods.

— Language Model-JM Smoothing works the best for ASR and
BM25 works reasonably well for other types of features.
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pseudo
labels

Generic Reranking Algorithm

t = 0; //Iteration zero

Choose the mitial pseudo labels and weights;

while ¢ < max 1teration do
Train a reranking model on the fixed labels and weights:
Update the pseudo labels and weights;
if 7 1s small then add more pseudo positives:

end while

return The list of samples after reranking:

reranking model

\ \ /
\ \
\ 4
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Generic Reranking Algorithm

t = 0; //Iteration zero

Choose the mitial pseudo labels and weights;

while ¢ < max 1teration do
Train a reranking model on the fixed labels and weights:
Update the pseudo labels and weights;
if 7 1s small then add more pseudo positives:

end while

return The list of samples after reranking:
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Intuition

Existing Learned
Event: Birthday Party
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Existing methods assign equal weights to pseudo samples.

Intuition: samples ranked at the top are generally more relevant
than those ranked lower.

Our approach: learn the weight together with the reranking
model. 4



Self-paced Learning

* Self-paced learning (Kumar et al 2010) is a learning
paradigm that is inspired by the learning process of
humans and animals.

 The samples are not learned randomly but
organized in a meaningful order which illustrates
from easy to gradually more complex ones.

Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum
learning. In ICML, 20089.

M. P. Kumar, B. Packer, and D. Koller. Self-paced learning for
latent variable models. In NIPS, pages 1189-1197, 2010.



Self-paced Learning

* |n the context of reranking : easy samples are
the top-ranked videos that have smaller loss.

Ranked list of Ranked list of
iteration 1 iteration n

00 » :

Age 1

w N
w N

Ranked List
o b
Ranked List
(& 2 NN

o N o
o N O
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Self-paced Reranking (SPaR)

 The propose model:

Reranking models for

min  E(O4,...,0,,,v,y;C. k) O1, ..., Om each modality.
617"'767717}’7-‘/

y € {—1,1}" The pseudo label.

min
YV.OL O, , ,- v € [0,1]"  The weight for
st Vi, Y5,y o(xig) + by) > 1 — Ly, by > 0 each sample.
y € {—1,+1}",
/ v € [0,1]",
Hinge loss function Function determines the

weighting scheme

The self-paced is implemented by a regularizer.
The loss in the reranking model is discounted by a weight.
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o Sample Weight

Proposed Weighting Schemes

Existing

Binary weighting [Kumar et al 2010]

1 1 <
f(V;‘E‘?} = _E”V"i = _E ;ta

== Hard Weighting
—O— Linear Soft Weighting
—8— | ogarithmic Soft Weighting

= & = Mixture Weighting ‘

1em Proposed
linear weighting
11 &
Fvik) = Z(SIVIE =Y wi).
k2 i=1
5 Logarithmic weighting

n o
k) = i —
f(vik) ;(ci o

Mixture weighting

04 05 . . . F(vik, k') =—=C log(vi + Ck),
Average Hinge Loss i=1

)

04|_

0 0.1 0.2

0.3
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Reranking in Optimization and
Conventional Perspective

t = 0; //lteration zero

Choose the initial pseudo labels and weights;

while £ < max iteration do
Train a reranking model on the fixed labels and weights;
Update the pseudo labels and weights;
if t is small then add more pseudo positives;

end while

return The list of samples after reranking:

t = 0; //Iteration zero

Choose starting values for y,v;

while ¢ < max iteration do
@(IHU, Qi = arg maxE‘v,v{@Ei), @i,i’;{?};
y T v = argmax Ee (y . v k);
if ¢ is small then increase 1/k;

end while

OISO A e
WADPT R

return [viy,--- ,l’nyn:T;
SPaR solution Reranking solution
Optimization perspective Conventional perspective

* Optimization perspective = theoretical justifications
* Conventional perspective = practical lessons

Q: Does the process converge? If so, to where?
A: For the proposed weighting, yes, to the local optimum.

Theorem 6.2. The algorithm in Fig. 6.2 converges to a stationary solution for any

fized C' and k.

See the proof in Appendix D



Experiments on MED13Test

MAP (x100) comparison with baseline methods

| Method [| NIST's split | 10 splits |
Without Reranking 3.9 4.9 + 1.6
Rocchio 5.7 7.4 + 2.2
Relevance Model 2.6 3.4 1 1.0
CPRF 6.4 83+ 1.8
Learning to Rank 3.4 4.2 + 1.4
MMPRF 10.1 13.6 &= 2.4
proposed _s SPaR 12.9 15.3 + 2.6
method Mixture weighting is used.
o AP comparlson W|th basellne methods on each event
. | -thnut Fleranhmg
Il Focchio
s 04r [ Relevance Model i
o ' [TIcPRF
O ool [lLearning to Rank |
E 0.3 -ME;LI'I;:HFQ 0 Ran
@ Il 57aR (Seli-paced Reranking )
2 0.2
:
< 01

EDE EO7 E08 E09 E10 E11 E12 E13 E14 EI5 E21 E22 EP3 E24 E25 E2Z6 EZ7 EZ8 E2S E30
Event ID

Significant improvement!

Outperforms baseline methods on 15/20 events. v



Experiments on Web Query

« Web image (353 queries over 71,478 images)
* Densely sampled SIFT are extracted.

e Parameters are tuned on a validation set.

* Mixture self-paced function is used.

MAP and MAP@100 comparison with baseline methods

Method MAFP MAP@I100
Without Reranking [17] 0.569 0.431
CPRF [38] 0.658 -
Random Walk [10] 0.616 -
Bayesian Reranking [33, 32] 0.658 0.529
Preference Learning Model [32] - 0.534
BVLS [26] 0.670 i
Query-Relative(visual) [17] 0.649

Supervised Reranking [39] 0.665 -
SPaR 0.672 0.557

SPaR also works for image reranking (single modality) _



Discussions on Video Reranking

We proposed SPaR, a novel and general framework for
multimodal reranking.

It has theoretical justification, e.g. convergence
properties.

We found two scenarios where SPaR may fail:

— Initial top-ranked samples are completely off-topic (bad starting
values).

— Features used in reranking are not discriminative to the queries.
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Introduction:
Building Semantic Concepts

* Training concept detectors need lots of labeled training
data. Annotated video data are hard to collect.

e Qur solution is to train detectors from weakly labeled
video data (metadata) downloaded from the Internet.

— Pros: no manual annotations
— Cons: weakly labeled data are very noisy

 We are interested in approaching this problem in a
more principled and theoretically sound way.

— Derive a theory from paradigms of curriculum learning and
self-paced learning.

— Use proposed theory to train concept detectors on noisy
data.



Curriculum Learning and
Self-paced Learning

Learning philosophy[Bengio et al. 2009, Kumar et al. 2010]:

* Learning is an iterative process.
* Samples should be organized in a meaningful order (called curriculum).

 Model complexity increases in each iteration.

“bus” to learn earlier “bus” to learn later

*The above of real examples in the TRECVID SIN dataset (http://trecvid.nist.gov/).



Curriculum Learning and
Self-paced Learning

e Curriculum Learning (CL): assign learning priorities to training
samples, according to prior knowledge or heuristics about
specific problems [Bengio et al. 2009].

— parsing from shorter sentences to longer sentence [Spitkovsky et al.
2009].

e Self-paced Learning (SPL): the curriculum is determined by
the learned models. Solving a joint optimization problem of
the learning objective with the latent curriculum [Kumar,
Packer, and Koller 2010].

— Broadly used in many learning problems such as tracking[Supancicet
al. 2013], domain adaptation [Tang et al. 2012], segmentation [Kumar
et al. 2011], etc.

Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In ICML, 2009.

M. P. Kumar, B. Packer, and D. Koller. Self-paced learning for latent variable models. In NIPS, pages 1189-1197, 2010.

Kevin Tang, Vignesh Ramanathan, Li Fei-Fei, and Daphne Koller. Shifting weights: Adapting object detectors from image to video. In NIPS, 2012
M. Kumar, H. Turki, D. Preston, and D. Koller. Learning specific-class segmentation from diverse data. In ICCV, 2011.

J. Supan”ci“c Il and D. Ramanan. Self-paced learning for long-term tracking. In CVPR, 2013.

V. |. Spitkovsky, H. Alshawi, and D. Jurafsky. Baby steps: How less is more in unsupervised dependency parsing. In NIPS, 2009.



Curriculum Learning versus
Self-paced Learning

Curriculum Learning (CL) Self-paced Learning (SPL)

i PrOS ° Pros

— Flexible to incorporate prior

— Learn consistent models.
knowledge/heuristics.

— Concise optimization problem.

[ ]
Cons . Cons

— Curriculum is determined

- C ior knowl :
beforehand which may not be annot use prior knowledge

consistent with dynamically - RanQQm starting values (can
learned models significantly affect
performance).

Unified in a single framework:
Self-paced Curriculum Learning



Self-paced Learning

 Formulated as an optimization problem (based on SPL).
Learner

w = parameters in the off-the-shell model :l' Off-the-shelf model

(SVM, neural
networks etc.)

L(y;, g(x;,w)) = loss for the ith sample

v = [v1,...,v,] = latent weight vector for all samples

* While fixing w, the solution is:

o — 1, Ly, g(xi, W)) < A, A = model age
‘ 0, otherwise.
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Self-paced Curriculum Learning

* Proposed learning objectives: .
Learning schemes
subject to v € ¥

f(v,A) = regularizer determines the learning scheme

Generalize a single learning scheme to multiple learning schemes.
For different problems, we can use different learning schemes.
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“Rock Climbing”
Learning Easy and Diverse Samples

Favor diverse

f(v,A) ==X Z V; /examples
i=1

—————— — — — —
»
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Self-paced Curriculum Learning

* Proposed learning objectives:

n Prior knowledge
arg min v L(y;,9(%;,W)) + f(V,A)  incurriculum
w,ve[0, 1] “— & learning

subject to v € ¥
* The shape of the feasible region weakly implies a prior

learning sequence of samples.

V1>V2>V3
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Self-paced Curriculum Learning

. _ . Learner
* Proposed learning objectives: Learning schemes

()

arg m%n ] UzL(yZag(XZaW)) =+ f(V, )\)
w,ve|0,1|" <
1=1

subject to v € W< Prior knowledge
. in curriculum
* A new learning theory: learning

* Flexible learning schemes to fit various problems;
* Easy to incorporate prior knowledge;
e Support any loss function.



Self-paced Curriculum Learning

Curriculum Learning (CL) Self-paced Learning (SPL)

student-driven

instructor-driven

Self-paced Curriculum Learning (SPCL)
1

(@ Unified in a single
o framework: SPCL

. . 65
instructor-student-collaborative



Preliminary Experiments

Comparison of SPL and SPCL with diversity learning scheme on MED

Run Name RandomForest AdaBoost BatchTrain SPL SPLD
Best Run 3.0 2.8 8.3 0.6 12.1
10 Runs Average 3.0 2.8 8.3 8.6+£0.42 |1 9.8+£0.45

Proposed method

Comparison of SPL and SPCL with diversity learning scheme on
Hollywood2 and Olympic Sports

Run Name RandomForest AdaBoost BatchTrain SPL

Hollywood2 28.20 41.14 58.16 63.72] 66.65
Olympic Sports 63.32 69.25 90.61 90.83

Proposed method
See more experiments in Section 7.4
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Preliminary Experiments

Using the proposed theory, we build detectors using the YFCC videos (videos
sampled from Flickr) with no labels.

We derive the curriculum from metadata (using language models) and train
SPCL with diversity learning scheme.

Train 609 detectors over 400K weakly labeled videos.
We manually evaluate their P@10 on a third dataset (MED).

YFCC 609 ImageNet 1000 | UCF 101

0.37608 0.2063 <0.1

/’ \ 10k labeled
Weakly labels on 1M labeled video segments
400K videos still images

Detectors built on a large weakly labeled data set are more
accurate than those built on a small labeled dataset.
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Proposed Work

* Processing hybrid queries:
— Preliminary studies showed hybrid query with 10 examples can be

done efficiently on compressed semantic features.

* Shoou-I Yu, Lu Jiang, Zhongwen Xu, Yi Yang, Alexander Hauptmann. Content-
Based Video Search over 1 Million Videos with 1 Core in 1 Second. In ACM
International Conference on Multimedia Retrieval (ICMR), 2015.

— The method, however, is not scalable as it needs preloading lots of
data into the memory.

— We plan to integrate semantic search methods into hybrid search
* Use the compressed semantic features.
* Apply concept adjustment.
* Apply semantic search to filter out irrelevant samples.

— We will test the proposed methods on MED and YFCC datasets.

* Training concept detectors on the whole YFCC dataset
(about 0.8 million videos.)



Schedule

October —Jan, 2015. Study the efficient search model for hybrid
search.

February — March, 2016. Test the model and finish the
experiments.

April — September, 2016. Thesis writing and defense.



Published papers on the thesis topic

[MM15] Lu Jiang, Shoou-I Yu, Deyu Meng, Yi Yang, Teruko Mitamura, Alexander Hauptmann. Fast and
Accurate Content-based Semantic Search in 100M Internet Videos. In ACM Multimedia (MM),
2015.

[ICMR15] Lu Jiang, Shoou-I Yu, Deyu Meng, Teruko Mitamura, Alexander Hauptmann. Bridging the
Ultimate Semantic Gap: A Semantic Search Engine for Internet Videos. In ACM International
Conference on Multimedia Retrieval (ICMR), 2015. [best paper candidate]

[AAAI15] Lu Jiang, Deyu Meng, Qian Zhao, Shiguang Shan, Alexander Hauptmann. Self-paced
Curriculum Learning. In Conference on Artificial Intelligence (AAAI), 2015.

[NIPS14] Lu Jiang, Deyu Meng, Shoou-I| Yu, Zhen-Zhong Lan, Shiguang Shan, Alexander Hauptmann.
Self-paced Learning with Diversity. In Neural Information Processing Systems (NIPS), 2014.

[MM14] Lu Jiang, Deyu Meng, Teruko Mitamura, Alexander Hauptmann. Easy Samples First:
Selfpaced Reranking for Zero-Example Multimedia Search. In ACM Multimedia (MM), 2014.

[ICMR14] Lu Jiang, Teruko Mitamura, Shoou-I Yu, Alexander Hauptmann. Zero-Example Event Search
using MultiModal Pseudo Relevance Feedback. In ACM International Conference on Multimedia
Retrieval (ICMR), 2014.

[ICMR14] Lu Jiang, Wei Tong, Deyu Meng, Alexander Hauptmann. Towards Efficient Learning of
Optimal Spatial Bag-of-Words Representations. In ACM International Conference on Multimedia
Retrieval (ICMR). 2014. [best paper candidate]

[SLT14] Yajie Miao, Lu Jiang, Hao Zhang, Florian Metze. Improvements to Speaker Adaptive Training
of Deep Neural Networks. In IEEE Spoken Language Technology (SLT), 2014. [best poster]

[MM12] Lu Jiang, Alexander Hauptmann, Guang Xiang. Leveraging High-level and Low-level Features
for Multimedia Event Detection. In ACM Multimedia (MM), 2012.



digital video understanding retrieve
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Key Contributions:

*The first-of-its-kind framework for web-scale content-based search over hundreds
of millions of Internet videos [ICMR’15]. The proposed framework supports text-to-
video, video-to-video, and text&video-to-video search [MM’12].

*A novel theory about self-paced curriculums learning and its application on robust
concept detector training [NIPS’14, AAAI'15].

*Novel reranking algorithms for improving performance [MM’14, ICMR’14].

*A concept adjustment method representing a video by a few salient and consistent
concepts that can be efficiently indexed by the modified inverted index [MM’15]

THANK YOU.
QUESTIONS?
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Applications

* |t can benefit a variety of related tasks such as
video summarization [7], video
recommendation, video hyperlinking [8],
social media video stream analysis [9], in-
video advertising [10], etc.



Distributional Consistency:
A Toy Example

Input video frame

Distributional Consistency in semantic concepts

0.8

0.8

0.4

sky Tloud  boat pl.ipmr dog  amimal
(a) Thresholding (; nerm) 7 — 0.5

Row concept detection scores

I
Growp Il

sky clood

(b) Lasso ( [ norm) 5 = (05

Boat pl.ipp:.r animal

I
Group T

shy clnud: boat | puppy dog  amimal

———————— e e —————————

(c) Growp lasso 1 =105

-------- o

(d) Sparse-group lasso (7 — 1.55, o = (.68
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Experiments on MED

Comparison of the full adjustment model with its special case Top-
k Thresholding on using IACC features.

Evaluation Metrie
Method 'k |l bGog  MRR MAP@20 MAP
“Our Model 50 || 0.0392 0.137 0.0151 0.0225
Top-k 50 || 0.0342  0.0986 0.0117 0.0218
Our Model 60 || 0.0388 0.132 0.0158  0.0239
Top-k 60 || 0.0310 0.103 0.0113 0.0220
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Example Queries

* Using the query, our system should be able to
— Find simple objects, actions, speech words.
— Search complex activities.

— Answer questions by/in videos.
Information need:
What did we talk about in the last year’s
forest camp?

Query (search videos in last year): -

forest

AND (walking OR hiking)
OR tree

AND faces

AND asr:speech != empty
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Concept Adjustment Model:
Distributional Consistency

* A naive implementation = infeasible to solve.

1
g(v;a, ) = §5Q||’UH0
* Our general implementation:

q
g(via, B) = aB|vii+(1—a) Y By/pillv?7:,
[=1

— Whena =1 —> lasso (approximate [, norm).
— Whena =0 —> group lasso (nonzero entries in a sparse set of groups)

— When a € (0,1) = sparse group lasso (group-wise sparse solution, but only
few coefficients in the group will be nonzero)



Experiments on YFCC

 We manually created queries for 30 products.
* Put commercials about the product to related video (in-video ads.)
e Evaluate the relevance of the top 20 returned results.

Average pe nercials on YFCC
2 X . lation Metric
ategory O SN [RR  MAP@20
Sports Premium Cycling Clothing IESETy 0.94
Auto KB PE TRAMD pscimooon 1.00 0.95
Grocery  Product: bicycle clothing() 93 0.88
Traveling and helmets ~1.00 0.96
Miscellane Query: superblke LactigNn. 85 0.74
Average - ﬁmx’)(\?R blk%.m 0.93 0.86

Queries and more results are available at:

https://sites.google.com/site/videosearch100m/ o



https://sites.google.com/site/videosearch100m/
https://sites.google.com/site/videosearch100m/

Experiments on YFCC

o 0 00 0 00
T _
_-

Fron:h:o‘rf(:ycnn; Clol:\ino

- e
Product: bicycle clothing
and helmets
Query: superbike racing
OR bmx OR bike

Product: football shoes
Query: running AND
football

New tires.

e NOW:

Free velisery
avaladie

Product: vehicle tire
Query: car OR exiting a
vehicle OR sports car
racing OR car wheel
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Self-paced Reranking (SPaR)

 The propose model:

Reranking models for

. ©4,....,0
min  E(O4,...,0,,,v,y;C. k) Lo ™me aach modality.
617"'7@77L7Y7V
y € {—1,1}" The pseudo label.
:yVVIVIilanm CZ,UZZEZ]_'_Z HWJ|2 "
Shadly =l ; v e [0,1] The weight for

s.b. Vi, Vj, yi(w; o(xi5) +b]) — Lij, i > 0 each sample.
y € {—1,+1}",
v € [0,1]",

For example the Loss in the SVM model.

fz'j = max{O, 1 — Y; - (W?é(X@]> + b]>}
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Self-paced Reranking (SPaR)

 The propose model:

O o Reranking models for
min  E(O4,...,0,,,v,y;C. k) Lo ™me aach modality.
617"'76mr7Y7V
n y € {—1,1}" The pseudo label.

min CZ%‘ +mf(v; k)

VOO v € (0,1 The weight for

s.t. each sample.

y € {_17 _1_1}71’
v € [0,1]",

The self-paced is implemented by a regularizer.

Physically corresponds to learning schemes that human use to learn different
tasks.

m is the total number of modality.

f is the self-paced function in self-paced learning.
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OIS P

Reranking in Optimization and
Conventional Perspective

t = 0; //lteration zero 1: ¢ = 0; //Iteration zero .
Choose starting values for y,v; 2: Choose the initial pseudo labels and weights;
while ¢ < max iteration do 3: while ¢ < max iteration do
e(¢+1)_ Ut _ oo R {E}m E){“‘C}‘ 4:  Train a reranking model on the fixed labels and weights;
{lt_“ i - & E; Py {i:.};”.! T2 5 Update the pseudo labels and weights;
y oo oV = arg max g (y VT ); 6:  if £ is small then add more pseudo positives:
if ¢ 15.51115111 then increase 1/k; 7. end while
end while e 8: return The list of samples after reranking;
return [viyi, -+, UnYn] ;
Optimization perspective Conventional perspective

Q1: Why the reranking algorithm performs iteratively?
A: Self-paced learning mimicking human and animal learning
process (from easy to complex examples).
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Reranking in Optimization and
Conventional Perspective

t = 0; //Iteration zero 1: ¢ = 0; //Iteration zero .
Choose starting values for y, v; 2: Choose the initial pseudo labels and weights;
while t < max iteration do 3: while t < max iteration do
@EHH,_---, o+ _ arg max E‘VIV{@EH: o .C); f TTra,in a reranking model on the ﬁx‘ed la})els and weights;
(t41) (1) _ . o Eo(y®, v(®): k); 5. Update the pseudo labels and weights;
y ooV — argmax o(y _ Vo RS 6:  if t is small then add more pseudo positives;
if ¢ 15.51115111 then increase 1/k; 7. end while
end while e 8: return The list of samples after reranking;
return |[viy1, -, UnYn| ;
Optimization perspective Conventional perspective

Q2: Does the process converge? If so, to where?
A: Yes, to the local optimum.
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OIS P

Reranking in Optimization and
Conventional Perspective

t = 0; //Iteration zero 1: ¢t = 0; //Iteration zero ,
Choose starting values for y,v: 2: Choose the initial pseudo labels and weights;
while t < max iteration do 3: while t < max iteration do
e(¢+1)_ Ut _ oo R {e(s) @{“‘C}‘ 4:  Train a reranking model on the fixed labels and weights;
{lt_“ ’ ",f;_i_l;n_ - & E; Tf; {i:.};”.! mr= 5. Update the pseudo labels and weights;
yo oLV = arginax oly _ v k) 6:  if t is small then add m True Weighting
15 t 1i5 .slmall then increase 1/k; 7 end while Label Binary predsfinediLeamed.
end w “_E: T 8: return The list of sample : \L
return [viyi, -, Un¥Yn] ; +1 m i |
| I
| |
. . . . . |
Optimization perspective Conventional | ‘{ |
| |
+1 m |
T |
| |
| [
| |
|
S .o i o6 |
| |
| |
u
| |
-1 K (1/4)0.1]]
| |
| |

Q3: Does the arbitrarily predefined weighting scheme converge?
A: Not guaranteed, but the discussed weights guarantees the
convergence. .



Indexing Semantic Features

Inverted List for
Concept relation graph roncept lemier
- Concept Detectors __E -_—— —..EL_ P range_tree pointer e,
e — —— — .-; T usion - wideo_id: 11
o — - — — ,ff animal ——— fhlanT{"\. occurence:2
- T == "Time — / "-m""‘:‘l"}/\‘ rame shot_id:1 range free
P— — e I hot_id-A -
Dense trajectory — I / dog cat I \ :Idl;;l_scure: 08 '-'IdEO_scur;:Cl.B
L AN T e e
o frame sound ".puppy, terrier ] — shot_score:0.6
o L ! '
s i ~. - L
g P T ‘ f" e ———— T"
: : [ ll
= - T I
Deep convolutional neural network termer=0.8 choe ng_ e =0.8 cheerirlg
sound=0.6 :u:uundJD.E
o g } Concept II.Imu'onary
N 1 = 2 | Inverted Lists
Video Stream ':I il .'.l u ' B ] Concept Fraquencies
underlying concepts in --—-—u, |I TemporakSpatial List
this frame: terrier, dog MFCC dog=0.2  blank_frame=0.6 dog-0.8  blank_frame=0. Video Featres
and cheering sound. Raw detection score Adjusted score
| I | Video Concept Index
1) Low-level features 2) Concept detection 3) Concept Adjustmenf 4)Inverted Indexing

axtrartinn

* Finally, the adjusted concept representation is indexed by the inverted
index. Indexing the real-valued score. Our index supports:

* modality search: visual:dog, ocr:dog

e score range search: score(dog, >=, 0.7)

* basic temporal search: tbefore(dog, cat), twindow(3s,dog, cat)
* Boolean logical search: dog AND NOT score(cat, >=, 0.5)
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Impact of the model parameters
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on MED14Eval (200, 000 videos).



Limitations

* The learning philosophy may not apply to



Related Work

* Related problems:
— Content-based Image Retrieval
— Copy Detection
— Semantic Concept Indexing / Action Detection
— Multimedia Event Detection

(Disclaimer: brief overview of related problems)



Content-based Image Retrieval

Goal: find visually similar images [Sivic et al 2006]
Query: a single image (query-by-example) P
Single Modality. Minimum semantic understanding. —— "=

Instance search: search the key frames about a specific instance [Zhu
et al 2012]
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Copy Detection/
Near Duplicate Detection
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Goal: find video copies derived from the input video,
usually by means of transformations such as addition,
deletion, formatting modification, etc [Over et al 2008].

Query: a segment of video.
well-studied

Multimodal. Minimum semantic understand  soblem
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Semantic Concept Detection/
Action Detection

dog -

Goal: find segments of video that contains the concept.

Query: a concept name or ID.

Simple Query.

The key is to build accurate individual detectors.
Need a lot of training data.
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Multimedia Event Detection (MED)

Birthday party

Semantic Query

pdeby B O O
I AY
Sl VTG

Present Kids

9 Ha .‘bir"rhda Chee.-r'\in

=T

* Goal: find video about certain complex events [Over
2014]. Initiated by NIST TRECVID in 2012.

* Query: text or example videos about an event.

e Complex query.

e Solving the problems need semantic understanding
about video content (especially for semantic queries).
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Generalized MED Problem

 The proposed problem is a generalized Multimedia
Event Detection (MED) problem.
* |tis similar to MED but with the following differences:

— The query can be about everything, not necessarily just an
event.

— Expand the boundary from large-scale to web-scale.



