Google Research

AdvAug: Robust Adversarial Augmentation for Neural Machine Translation

Yong Cheng, Lu Jiang, Wolfgang Macherey, Jacob Eisenstein

Introduction

Neural Machine Translation (NMT)

Neural Machine Translation (NMT)

It was indeed a miracle that the plane did not touch down at home or hospital.

Google Research

У

Sensitive to Input Perturbations

Sensitive to Input Perturbations

Sensitive to Input Perturbations

Previous Work

- One potential solution is data augmentation which introduces noise to training examples guided by the principle that the noisy examples are still semantically valid translation pairs.
 - Continuous noise which is modeled as a real-valued vector applied to word embeddings (Miyato et al., 2016, 2017; Cheng et al., 2018; Sano et al., 2019).
 - Discrete noise which adds, deletes, and/or replaces characters or words in the observed sentences (Belinkov and Bisk, 2018; Sperber et al., 2017; Ebrahimi et al., 2018; Michel et al., 2019; Cheng et al., 2019; Karpukhin et al., 2019).

Background Work

- Generating Adversarial Examples for NMT (Cheng et al. 2019).
 - Adversarial examples are generated by solving: $\hat{\mathbf{x}} = \operatorname{argmax} \ \ell(f(e(\hat{\mathbf{x}}), e(\mathbf{y}); \boldsymbol{\theta}), \dot{\mathbf{y}})$

The set of adversarial examples from (\mathbf{x}, \mathbf{y}) :

$$\begin{aligned} A_{(\mathbf{x},\mathbf{y})} &= \{ (\hat{\mathbf{x}}, \hat{\mathbf{y}}) | \hat{\mathbf{x}} \leftarrow \pi(\mathbf{x}; \mathbf{x}, \mathbf{y}, \xi_{src}), \\ \hat{\mathbf{y}} \leftarrow \pi(\mathbf{y}; \hat{\mathbf{x}}, \mathbf{y}, \xi_{tgt}) \}, \end{aligned}$$

- Data Mixup (Zhang et al. 2018).
 - Given a pair of images $(\mathbf{x}', \mathbf{y}')$ and $(\mathbf{x}'', \mathbf{y}'')$, mixup minimizes the sample loss from a vicinity distribution $P_v(\tilde{\mathbf{x}}, \tilde{\mathbf{y}})$ defined in the RGB-label space:

$$\begin{split} \tilde{\mathbf{x}} &= \lambda \mathbf{x}' + (1 - \lambda) \mathbf{x}'', \\ \tilde{\mathbf{y}} &= \lambda \mathbf{y}' + (1 - \lambda) \mathbf{y}''. \end{split} \qquad \lambda \sim \operatorname{Beta}(\alpha, \alpha) \end{split}$$

 $\hat{\mathbf{x}}:\mathcal{R}(\hat{\mathbf{x}},\mathbf{x}) \leq \epsilon$

• We introduce a novel *vicinity distribution* to describe the space of adversarial examples centered around each training example.

x: 这个想法很好,大家都喜欢。	
y: This idea is really good, everyone likes it.	

- We introduce a novel *vicinity distribution* to describe the space of adversarial examples centered around each training example.
 - First generate adversarial sentences in the discrete data space,

- We introduce a novel *vicinity distribution* to describe the space of adversarial examples centered around each training example.
 - First generate adversarial sentences in the discrete data space, and then sample *virtual* adversarial sentences from the vicinity distribution according to their interpolated embeddings.

- We introduce a novel *vicinity distribution* to describe the space of adversarial examples centered around each training example.
 - First generate adversarial sentences in the discrete data space, and then sample *virtual* adversarial sentences from the vicinity distribution according to their interpolated embeddings
- We also use a similar *vicinity distribution* over the authentic training data.

- We introduce a novel *vicinity distribution* to describe the space of adversarial examples centered around each training example.
 - First generate adversarial sentences in the discrete data space, and then sample *virtual* adversarial sentences from the vicinity distribution according to their interpolated embeddings
- We also use a similar *vicinity distribution* over the authentic training data.
- We train on the embeddings sampled from the two *vicinity distributions*.

AdvAug

- We propose two *vicinity distributions* to reinforce the model over virtual data points surrounding the observed examples in the training set.
 - \circ P_{adv} for the (dynamically generated) adversarial examples

$$\bigwedge \quad P_{adv}(\tilde{\mathbf{x}}, \tilde{\mathbf{y}}) = \frac{1}{|\mathcal{S}|} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{S}} \mu_{adv}(\tilde{\mathbf{x}}, \tilde{\mathbf{y}} | A_{(\mathbf{x}, \mathbf{y})})$$

 $\circ P_{aut}$ for the (observed) *authentic* examples

$$P_{aut}(\tilde{\mathbf{x}}, \tilde{\mathbf{y}}) = \frac{1}{|\mathcal{S}|} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{S}} \mu_{aut}(\tilde{\mathbf{x}}, \tilde{\mathbf{y}} | \mathbf{x}, \mathbf{y})$$

• Training objective combines two losses on them: $\theta^* = \underset{\theta}{\operatorname{argmin}} \{\mathcal{L}_{aut}(\theta) + \mathcal{L}_{adv}(\theta)\}$

How to Compute μ_{adv}

• μ_{adv} in P_{adv} can be calculated from:

$$\mu_{adv}(\tilde{\mathbf{x}}, \tilde{\mathbf{y}}|A_{(\mathbf{x}, \mathbf{y})}) = \frac{1}{|A_{(\mathbf{x}, \mathbf{y})}|^2} \sum_{(\mathbf{x}', \mathbf{y}') \in A_{(\mathbf{x}, \mathbf{y})}} \sum_{\mathbf{x}'', \mathbf{y}'') \in A_{(\mathbf{x}, \mathbf{y})}} \mathbb{E}[\delta(e(\tilde{\mathbf{x}}) = m_{\lambda}(\mathbf{x}', \mathbf{x}''), e(\tilde{\mathbf{y}}) = m_{\lambda}(\mathbf{y}', \mathbf{y}'')]$$

 The convex combination m_λ(x', x") is applied over the aligned embeddings by padding tokens to the end of the shorter sentence.

$$e(\tilde{x}_i) = \lambda e(x'_i) + (1 - \lambda) e(x''_i), \forall i \in [1, |\tilde{\mathbf{x}}|] \qquad \lambda \sim \text{Beta}(\alpha, \alpha)$$

Loss for P_{adv}

• The translation loss on vicinal adversarial examples can be integrated over Padv

$$\mathcal{L}_{adv}(\boldsymbol{\theta}) = \mathbb{E}_{P_{adv}(\tilde{\mathbf{x}}, \tilde{\mathbf{y}})} [\ell(f(e(\tilde{\mathbf{x}}), e(\tilde{\mathbf{y}}); \boldsymbol{\theta}), \boldsymbol{\omega})]$$

- Two techniques are used for computing it:
 - Minimize the KL-divergence between the model predictions at the word level .

$$\sum_{j=1}^{|\mathbf{y}|} D_{KL}(f_j(e(\mathbf{x}), e(\mathbf{y}); \hat{\boldsymbol{\theta}}) || f_j(e(\tilde{\mathbf{x}}), e(\tilde{\mathbf{y}}); \boldsymbol{\theta})) \text{ so } \boldsymbol{\omega} = f(e(\mathbf{x}), e(\mathbf{y}); \hat{\boldsymbol{\theta}})$$

• Employ curriculum learning to do importance sampling.

$$\mathbf{L} = \frac{1}{\sum_{i=1}^m I(\ell_i > \eta)} \sum_{i=1}^m I(\ell_i > \eta) \ell_i$$

Loss for *P*_{aut}

• The translation loss on authentic data can be compute as

$$\mathcal{L}_{aut}(\boldsymbol{\theta}) = \mathbb{E}_{P_{aut}(\tilde{\mathbf{x}}, \tilde{\mathbf{y}})} [\ell(f(e(\tilde{\mathbf{x}}), e(\tilde{\mathbf{y}}); \boldsymbol{\theta}), \tilde{\boldsymbol{\omega}})]$$

• μ_{aut} in the vicinity distribution P_{aut} is

$$\mu_{aut}(\tilde{\mathbf{x}}, \tilde{\mathbf{y}} | \mathbf{x}, \mathbf{y}) = \frac{1}{|\mathcal{S}|} \sum_{(\mathbf{x}', \mathbf{y}') \in \mathcal{S}} \mathbb{E} \left[\delta(e(\tilde{\mathbf{x}}) = m_{\lambda}(\mathbf{x}, \mathbf{x}'), e(\tilde{\mathbf{y}}) = m_{\lambda}(\mathbf{y}, \mathbf{y}'), \ \tilde{\boldsymbol{\omega}} = m_{\lambda}(\boldsymbol{\omega}, \boldsymbol{\omega}')) \right]$$

- $\circ~\lambda~$ is sampled twice, a constant 1.0 and a sample from a Beta distribution.
- $\circ \ oldsymbol{\omega}$ is also interpolated.

Experiments

Results on Chinese-English Translation

Method	Loss Config	MT06	MT02	MT03	MT04	MT05	MT08
Vaswani et al.	L _{clean}	44.57	45.49	44.55	46.20	44.96	35.11
Miyato et al.	-	45.28	45.95	44.68	45.99	45.32	35.84
Sano et al.	-	45.75	46.37	45.02	46.49	45.88	35.90
Cheng et al.	-	46.95	47.06	46.48	47.39	46.58	37.38
Sennrich et al.	-	46.39	47.31	47.10	47.81	45.69	36.43
Ours	L _{mixup}	45.12	46.32	44.81	46.61	46.08	36.00
	L _{aut}	46.73	46.79	46.13	47.54	46.88	37.21
	L _{clean} + L _{adv}	47.89	48.53	48.73	48.60	48.76	39.03
	$L_{aut} + L_{adv}$	49.26	49.03	47.96	48.86	49.88	39.63
Ours + BT	L _{aut} + L _{adv}	49.98	50.34	49.81	50.61	50.72	40.45

Results on English-French and English-German Translation

Method	Loss Config.	English-French		English-German	
		test2013	test2014	test2013	test2014
Vaswani et al.	L _{clean}	40.78	37.57	25.80	27.30
Sano et al.	-	41.68	38.72	25.97	27.46
Cheng et al.	-	41.76	39.46	26.34	28.34
	L _{mixup}	40.78	38.11	26.28	28.08
Ours	L _{aut}	41.49	38.74	26.33	28.58
	$L_{aut} + L_{adv}$	43.03	40.91	27.20	29.57

Effect of α in Beta Distribution

Loss	0.2	0.4	4	8	32
L _{mixup}	45.28	45.48	45.64	45.09	-
L _{aut}	45.95	45.92	46.70	46.73	46.54
L _{aut} + L _{adv}	47.06	46.88	47.60	47.89	47.81

Robustness to Noisy Inputs and Overfitting

Results on artificial noisy inputs.

BLEU scores over iterations.

Conclusions

Conclusions

- We have presented an approach to augment the training data of NMT models by introducing a new vicinity distribution defined over the interpolated embeddings of adversarial examples and authentic examples.
- We design an augmentation algorithm over the virtual sentences sampled from both of the vicinity distributions in sequence-to-sequence NMT model training.

