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What is a viral video:

* Aviral video is a video that becomes popular through
the process of (most often) Internet sharing through
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* Aviral video is a video that becomes popular through
the process of (most often) Internet sharing through

social media.
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e Viral videos have been having a profound impact on
many aspects of society.

 Politics:

— Pro-Obama video “Yes we can” went viral (10 million
views) in 2008 US presidential election [Broxton 2013].

YES, WE CAN.
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Social Validity

e Viral videos have been having a profound impact on
many aspects of society.

 Politics:

— We found that Obama Style and Mitt Romney Style went
viral (30 million views in the month of Election Day), and
peaked on Election Day.
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Social Validity cont.

e Viral videos have been having a profound impact on
many aspects of society.

* Financial marketing:

— Old Spice’s campaign went viral and improved the brand’s
popularity among young customers[West et al 2011].
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e Viral videos have been having a profound impact on
many aspects of society.

* Financial marketing:

— Psy’s commercial deals has amounted to 4.6 million dollars
from Gangnam Style.
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Motivation

* Existing studies are conducted on:
— Small set (tens of videos) = biased observations?
— Large-scale Google set = confidential!

* Arelatively large and public dataset on viral
videos would be conducive.

e Solution: CMU Viral Video Dataset.

Beware the content
are hilarious!
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= CMU Viral Video Dataset
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* By far the largest public viral video dataset.
Time’s list was the largest dataset (50 videos).
* Videos are manually selected by experts

— Editors from Time Magazine, YouTube and the viral
video review episodes.

 Statistics: 446 viral videos, 294 quality 19,260
background videos.

You 13

10+ million subscribers!
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* For avideo, it includes:
— Thumbnail
— Video and user metadata
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* For avideo, it includes:
— Thumbnail
— Video and user metadata
— Insight data: historical views, likes, dislikes, etc.

Date Day View
12/18/2012 0 1296022
12/19/2012 1 15552276
12/20/2012 2 8025373
12/21/2012 3 3987763
12/22/2012 4 2090822
12/23/2012 a 2392658
12/24/2012 6 2093575



* For avideo, it includes:

— Thumbnail

— Video and user metadata
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— Insight data: historical views, likes, dislikes, etc.

— Social data: #Inlinks, daily tweeter mentions

(pending)

[Number of In-links]
624000

[#Tweets mentioned]

Date
12/18/2012
121872012
1211972012
12/20/2012
1212172012

#Tweets with Video ID
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Rolling in ¥he deep
You had my heart and
soul
And you played i
To +he beat

b) ID:mBRUkdQa6ls

-

(c) ID: OBlgSst‘SM (d) ID: Y130B-IhE7I

— Near duplicate videos (automatic detection +
manual inspection).
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Statistical Characteristics

Table 3: Basic statistics about viral videos.
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Statistics

Viral

Quality

Background

Rater/View
Cor(inlinks, view)
Days-to-peak Median
Lifespan Median

L0 e
0.54+.03%
0.54
24
7

N Ly L.
0.38+.01%
0.25
63
166

0.28
30
10

* Observations agree with existing studies including
the study on Google’s dataset

— Short title, Short duration.

* Less biased.
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Observation |

* The days-to-peak and the lifespan of viral
videos decrease over time.

Table 4: Evolution of viral videos.

Statistics 2010 | 2011 | 2012
Days-to-peak Median 24 14 9
Lifespan Median 8 § 3
L8R / Days-to-peak
1.6E+07
1.4E+07 — J
1.2E+07 +—— -
g 1.0E+07 — —
$ 506406 || Lifespal‘l
6.0E+06 _|=|/
4.0E+06 +—
2.0E+06
0.0E4+00 T T T
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Hdays after the upload
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* The popularity of the uploader is a more substantial factor
that affects the popularity than the upload time.

* Upload time is believed to be the most important factor in
background videos[Borghol et al. 2012], coined as First-mover

advantage.

0.7

0.61

0.5r

Bl Viral Video
Bl Quality Video

0.4r

0.31

Average Pearson Correlation Coefficient

0
Uploader per-video views Upload time Title length Average rate

An example: official
music videos
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Peak Day Prediction

* Forecast when a video can get its peak view
based on its historical view pattern.
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Peak Day Prediction

* Forecast when a video can get its peak view
based on its historical daily view pattern.

?7??

S

1 2 3 4 5 G 7 3 9 10 11 12 13 14 15 16 17 18

#days after the upload




Carnegie
Mellon
University

Peak Day Prediction

* Forecast the date a video can get its peak view
based on its daily view pattern.

?7??

1 2 3 4 5 G 7 3 9 10 11 12 13 14 15 16 17 18

#days after the upload




Carnegie
Mellon
University

Peak Day Prediction

* Forecast when a video can get its peak view
based on its historical daily view pattern.

True peak date

1 2 3 4 5 G 7 3 9 10 11 12 13 14 15 16 17 18

#days after the upload




S, Carnegie

§ @ %e!lon :
WY . « 4 niversi
Peak Day Prediction N

* Forecast the date a video can get its peak view
based on its daily view pattern.

* This application is significant in supporting
and driving the design of various services:

— Advertising agencies: determine timing and
estimate cost

— YouTube: recommendation
— Companies/Politicians: respond viral campaigns
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 Model daily views using HMM model:
* Two types of states:
— hibernating = less views

— active 2 more views
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 Model daily views using HMM model:
* Two types of states:
— hibernating = less views

— active 2 more views
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 Model daily views using HMM model:
* Two types of states:
— hibernating = less views

— active 2 more views

di1
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 Model daily views using HMM model:
* Two types of states:
— hibernating = less views

— active 2 more views

d2

h h
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 Model daily views using HMM model:
* Two types of states:
— hibernating = less views

— active 2 more views

[mkmllﬂm LE[[[L

low  high low  high o  high o
view cournt level distribution
1 2 3 4 5 5] 7 8 9 10 11 12 132 14 15 16 17 18

#days after the upload
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* Model daily views using HMM model:
* Two types of states:

— hibernating =2 less views

— active = more views

* Novel modifications:

* Incorporate metadata in the prediction. Other
work only use the pure view count [Pinto et al.

2013].
* Smooth transition probability by a Gaussian prior.
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Experimental Results

=&—Our Method
0.7L | =B Plain HMM
== SVM Regression
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Days Since Peak View

Considering metadata in peak day prediction is instrumental.
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Result cont.

* Early warning system for viral videos.

* Detect viral videos and forecast their peak
dates.

i

Viral Videos

|

Evolution of The Sneezing

Golden Eagle

HOW TOPLAY:
Reference Date | Snatches Kid Dance Baby Panda Rebecca Black Pink

7 days before the true peak day |

Fnday -

| peak in 7 days peak in 9 days peak in 6 days peak in 9 days Not a viral video
3 days before the true peak day |  poakin 2 days

| peak in 3 days peak in 2 days peak in 6 days Not a viral video
It will peak It will peak It will peak ¥
1 day before the true peak day : tomorrow. tomorrow. tomorTow. peak in 2 days Not a viral video
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Conclusions

* A few messages to take away from this talk:

— CMU Viral Video Dataset is by far the largest open
dataset for viral videos study.

— This paper discovers several interesting
characteristics about viral videos.

— This paper proposes a novel method to forecast
the peak day for viral videos. The preliminary
results look promising.
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