

Viral Video Style: A Closer Look at Viral Videos on YouTube

<u>Lu Jiang</u>, Yajie Miao, Yi Yang, Zhenzhong Lan, Alexander G. Hauptmann

School of Computer Science, Carnegie Mellon University

Carnegie Mellon University

- Introduction
- CMU Viral Video Dataset
- Statistical Characteristics
- Peak Day Prediction
- Conclusions

Introduction

- CMU Viral Video Dataset
- Statistical Characteristics
- Peak Day Prediction
- Conclusions

What is a viral video?

 A viral video is a video that becomes popular through the process of (most often) Internet sharing through social media.

Gangnam Style

What is a viral video?

• A viral video is a video that becomes popular through the process of (most often) Internet sharing through social media.

Charlie bit my finger

Gangnam Style

Missing pilot MH370

part1 of 2 as video 16min lor

Social Validity

- Viral videos have been having a profound impact on many aspects of society.
- Politics:
 - Pro-Obama video "Yes we can" went viral (10 million views) in 2008 US presidential election [Broxton 2013].

Social Validity

- Viral videos have been having a profound impact on many aspects of society.
- Politics:
 - Pro-Obama video "Yes we can" went viral (10 million views) in 2008 US presidential election [Broxton 2013].
 - We found that Obama Style and Mitt Romney Style went viral (30 million views in the month of Election Day), and peaked on Election Day.

Social Validity

Social Validity cont.

- Viral videos have been having a profound impact on many aspects of society.
- Financial marketing:
 - Old Spice's campaign went viral and improved the brand's popularity among young customers[West et al 2011].

Social Validity cont.

- Viral videos have been having a profound impact on many aspects of society.
- Financial marketing:
 - Old Spice's campaign went viral and improved the brand's popularity among young customers[West et al 2011].
 - Psy's commercial deals has amounted to 4.6 million dollars from Gangnam Style.

- Small set (tens of videos) \rightarrow biased observations?
- Large-scale Google set \rightarrow confidential!
- A relatively large and public dataset on viral videos would be conducive.
- Solution: CMU Viral Video Dataset.

Beware the content are hilarious!

Carnegie

niversitv

Introduction

CMU Viral Video Dataset

- Statistical Characteristics
- Peak Day Prediction
- Conclusions

CMU Viral Video Dataset

- By far the largest public viral video dataset. Time's list was the largest dataset (50 videos).
- Videos are manually selected by experts
 - Editors from Time Magazine, YouTube and the viral video review episodes.
- Statistics: 446 viral videos, 294 quality 19,260 background videos.

10+ million subscribers!

CMU Viral Video Dataset Cont. CMU Viral Video Dataset Cont.

- For a video, it includes:
 - Thumbnail
 - Video and user metadata

CMU Viral Video Dataset Cont.

- For a video, it includes:
 - Thumbnail
 - Video and user metadata
 - Insight data: historical views, likes, dislikes, etc.

CMU Viral Video Dataset Cont.

- For a video, it includes:
 - Thumbnail
 - Video and user metadata
 - Insight data: historical views, likes, dislikes, etc.
 - Social data: #Inlinks, daily tweeter mentions (pending)

[Number of In-links] 624000

[#Tweets mentioned]

Date	#Tweets with Video ID	
12/18/2012		0
12/18/2012		79
12/19/2012		14
12/20/2012		3
12/21/2012		7

Carnegie

CMU Viral Video Dataset Cont.

Near duplicate videos (automatic detection + manual inspection).

- Introduction
- CMU Viral Video Dataset
- Statistical Characteristics
- Peak Day Prediction
- Conclusions

Statistical Characteristics

Table 3: Basic	statistics a	bout viral	videos.
Statistics	Viral	Quality	Background
View Count Median	3 070 011	55 455 364	7 528
Title length	5.0 ± 0.1	5.4 ± 0.1	$7.0 {\pm} 0.1$

 248 ± 3.9

 4.75 ± 0.03

 $0.38 \pm .01\%$

0.25

63

166

 252 ± 24.6

 4.04 ± 0.08

 $0.87 \pm .07\%$

0.28

30

10

 138.6 ± 16.0

 4.09 ± 0.03

 $0.54 \pm .03\%$

0.54

24

 $\overline{7}$

•	Observations agree with existing studies including
	the study on Google's dataset

Short title, Short duration.

Duration(s)

Average Rate

Rater/View Cor(inlinks, view)

Days-to-peak Median

Lifespan Median

• Less biased.

Observation I

• The days-to-peak and the lifespan of viral videos decrease over time.

<u>Table 4: Evolution</u>	n of vir	<u>al vid</u>	eos.
Statistics	2010	2011	2012
Days-to-peak Median Lifespan Median		$ \begin{array}{c} 14 \\ 6 \end{array} $	$\frac{9}{3}$

University

• Upload time is believed to be the most important factor in background videos[Borghol et al. 2012], coined as First-mover advantage.

- Introduction
- CMU Viral Video Dataset
- Statistical Characteristics
- Peak Day Prediction
- Conclusions

• Forecast when a video can get its peak view based on its historical view pattern.

• Forecast when a video can get its peak view based on its historical daily view pattern.

• Forecast the date a video can get its peak view based on its daily view pattern.

• Forecast when a video can get its peak view based on its historical daily view pattern.

- Forecast the date a video can get its peak view based on its daily view pattern.
- This application is **significant** in supporting and driving the design of various services:
 - Advertising agencies: determine timing and estimate cost
 - YouTube: recommendation
 - Companies/Politicians: respond viral campaigns

- Two types of states:
 - hibernating \rightarrow less views
 - active \rightarrow more views

- Two types of states:
 - hibernating \rightarrow less views
 - active \rightarrow more views

- Two types of states:
 - hibernating \rightarrow less views
 - active \rightarrow more views

- Model daily views using HMM model:
- Two types of states:
 - hibernating \rightarrow less views
 - active \rightarrow more views

- Model daily views using HMM model:
- Two types of states:
 - hibernating \rightarrow less views

Carnegie

- Model daily views using HMM model:
- Two types of states:
 - hibernating \rightarrow less views
 - active \rightarrow more views
- Novel modifications:
 - Incorporate metadata in the prediction. Other work only use the pure view count [Pinto et al. 2013].
 - Smooth transition probability by a Gaussian prior.

Experimental Results

Considering **metadata** in peak day prediction is instrumental.

- Early warning system for viral videos.
- Detect viral videos and forecast their peak dates.

Viral Videos			R		
Reference Date	Golden Eagle Snatches Kid	Evolution of Dance	The Sneezing Baby Panda	Friday - Rebecca Black	HOW TO PLAY: Pink
7 days before the true peak day	peak in 7 days	peak in 9 days	peak in 6 days	peak in 9 days	Not a viral video
3 days before the true peak day	peak in 3 days	peak in 3 days	peak in 2 days	peak in 6 days	Not a viral video
1 day before the true peak day	It will peak tomorrow.	It will peak tomorrow.	It will peak tomorrow.	peak in 2 days	Not a viral video

- Introduction
- CMU Viral Video Dataset
- Statistical Characteristics
- Peak Day Prediction
- Conclusions

Carnegie

- CMU Viral Video Dataset is by far the largest open dataset for viral videos study.
- This paper discovers several interesting characteristics about viral videos.
- This paper proposes a novel method to forecast the peak day for viral videos. The preliminary results look promising.

References

- T. West. Going viral: Factors that lead videos to become internet phenomena. Elon Journal of Undergraduate Research, pages 76–84, 2011.
- T. Broxton, Y. Interian, J. Vaver, and M. Wattenhofer. Catching a viral video. Journal of Intelligent Information Systems, 40(2):241–259, 2013.
- Y. Borghol, S. Ardon, N. Carlsson, D. Eager, and A. Mahanti. The untold story of the clones: content-agnostic factors that impact youtube video popularity. In SIGKDD, pages 1186–1194, 2012.
- H. Pinto, J. M. Almeida, and M. A. Gon, calves. Using early view patterns to predict the popularity of youtube videos. In WSDM, pages 365–374, 2013.

SEARCH visualize summarize

retrieve

THANK YOU. Q&A?