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What is a viral video?

• A viral video is a video that becomes popular through 
the process of (most often) Internet sharing through 
social media.

Gangnam Style



What is a viral video?

• A viral video is a video that becomes popular through 
the process of (most often) Internet sharing through 
social media.

Gangnam StyleCharlie bit my finger Missing pilot MH370



Social Validity

• Viral videos have been having a profound impact on 
many aspects of society.

• Politics:
– Pro-Obama video “Yes we can” went viral (10 million 

views) in 2008 US presidential election [Broxton 2013].
– Obama Style and Mitt Romney Style went viral (30 million 

views in the month of Election Day), and peaked on 
Election Day.
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Social Validity cont.

• Viral videos have been having a profound impact on 
many aspects of society.

• Financial marketing:
– Old Spice’s campaign went viral and improved the brand’s 

popularity among young customers[West et al 2011].

– Psy’s commercial deals has amounted to 4.6 million dollars 
from Gangnam Style.
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Motivation

• Existing studies are conducted on:
– Small set (tens of videos)  biased observations?

– Large-scale Google set  confidential!

• A relatively large and public dataset on viral 
videos would be conducive.

• Solution: CMU Viral Video Dataset.

Beware the content 
are hilarious!
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CMU Viral Video Dataset

• By far the largest public viral video dataset. 
Time’s list was the largest dataset (50 videos).

• Videos are manually selected by experts
– Editors from Time Magazine, YouTube and the viral 

video review episodes.

• Statistics: 446 viral videos, 294 quality 19,260 
background videos.

10+ million subscribers!



CMU Viral Video Dataset Cont.

• For a video, it includes:

– Thumbnail

– Video and user metadata

– Insight data: historical views, likes, dislikes, etc.

– Social data: #Inlinks, daily tweeter metions
(pending)

– Near duplicate videos (automatic detection + 
manual inspection).
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Statistical Characteristics

• Observations agree with existing studies including 
the study on Google’s dataset
– Short title, Short duration.

• Less biased.



Observation I

• The days-to-peak and the lifespan of viral 
videos decrease over time.

Days-to-peak

Lifespan



Observation II

• The popularity of the uploader is a more substantial factor 
that affects the popularity than the upload time.

• Upload time is believed to be the most important factor in 
background videos[Borghol et al. 2012], coined as First-mover 
advantage.

An example:  official 
music videos
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Peak Day Prediction

• Forecast when a video can get its peak view 
based on its historical view pattern.
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Peak Day Prediction

• Forecast the date a video can get its peak view 
based on its daily view pattern.

• This application is significant in supporting 
and driving the design of various services:

– Advertising agencies: determine timing and 
estimate cost

– YouTube: recommendation

– Companies/Politicians: respond viral campaigns



HMM Model

• Model daily views using HMM model:

• Two types of states:

– hibernating  less views

– active more views
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HMM Model

• Model daily views using HMM model:

• Two types of states:

– hibernating  less views

– active more views

• Novel modifications:

• Incorporate metadata in the prediction. Other 
work only use the pure view count [Pinto et al. 
2013].

• Smooth transition probability by a Gaussian prior.



Experimental Results

Considering  metadata in peak day prediction is instrumental.



Result cont.

• Early warning system for viral videos.

• Detect viral videos and forecast their peak 
dates. 
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Conclusions

• A few messages to take away from this talk:

– CMU Viral Video Dataset is by far the largest open 
dataset  for viral videos study.

– This paper discovers several interesting 
characteristics about viral videos.

– This paper proposes a novel method to forecast 
the peak day for viral videos. The preliminary 
results look promising.
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