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Spatial Bag-of-Words

* The Spatial Bag-of-Words (BoW) model has proven one of
the most broadly used models in image and video retrieval.

* It divides an image/video into one or more smaller tiles.
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@ Spatial Pyramid Matching (SPM) """

e Spatial Pyramid Matching is a robust extension to
spatial BowW Model.

 Combine a set of predefined partitions (1x1, 2x2, 4x4,

etc.)
I 2

* But, are predefined representations in SPM sufficient
for multimedia retrieval?
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Spatial Pyramid Matching (SPM) """

e Spatial Pyramid Matching is a robust extension to
spatial BowW Model.

 Combine a set of predefined partitions (1x1, 2x2, 4x4,

etc.)
I 2

* But, are predefined tilings in SPM sufficient for
multimedia retrieval?




Carnegie
Mellon
University

e Spatial Pyramid Matching is a robust extension to
spatial BowW Model.

 Combine a set of predefined partitions (1x1, 2x2, 4x4,

etc.)
I 2

e But, are predefined representations SPM sufficient for
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Semantic Indexing

Global Visual Features - Spatial Granularities
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http://www-nlpir.nist.gov/projects/tvpubs/tv12.slides/tv12.ibm.sin.slides.pdf
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Multimedia Event Detection
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Feature Pooling Using Fixed Spatial Patterns
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* Objective
— Limitation: Features aggregated from a whole frame contains more irrelevant data of an event
— Goal: Extract event relevant information by pooling features from different parts of a frame
* Spatial pooling using fixed patterns
— Aggregate features over a set of pre-defined regions as shown at SR' lnternational
— Implicitly encodes location information with visual-words for bet
— Fixed patterns are easy and fast to computer

http://www-nlpir.nist.gov/projects/tvpubs/tvl2.slides/tvl2.aurora.med.slides.pdf
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Surveillance Event Detection

* Each frame is divided into a set of rectangular tiles or grids.

* The resulting Bow features are derived by concatenating the Bow
features captured in each grid.

* Encode the adjusted spatial information in BoW.
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http://www-nlpir.nist.gov/projects/tvpubs/tvil.slides/tvll.cmu.sed.slides.pdf
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Motivation

e Spatial Representation is fundamental to multimedia
retrieval.
— Semantic objects/concepts indexing.
— Multimedia event retrieval.
— Surveillance event detection, etc.

* Different spatial representations can affects results
considerably.
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Semi-Manual Approach ™"

* A straightforward way to find optimal
representations [1,2]:
— Manually design representation candidates.
— Verify the candidates by running the classifier.

e Cons:

— Require manual effort .
— Computationally infeasible to verify all the candidates.

[1] W. Tong, Y. Yang, L. Jiang, S. |. Yu, Z. Lan, Z. Ma, W. Sze, E. Younessian, and A. G. Hauptmann. E-LAMP: integration
of innovative ideas for multimedia event detection. Machine Vision and Applications, pages 1-11, 2013.
[2] V. Viitaniemi and J. Laaksonen. Spatial extensions to bag of visual words. In ACM CIVR, 2009.
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 Manually designing representations is never an easy thing.

* QOur goal:

— Automatically learn salient spatial representations from
data.

— Efficient enough to run on large-scale data.
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Existing studies learn the
representations with the
classifiers [3,4,5] .

*Reasonable Improvements.
*Time consuming.

*Low cost-effective.

2,000 core hours for 2% MAP
(worth doing?)

Comparison with Related Work

Classifier
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[3]J. Feng, B. Ni, Q. Tian, and S. Yan. Geometric Ip-norm feature
pooling for image classification. In CVPR, 2011.

[4] Y. Jia, C. Huang, and T. Darrell. Beyond spatial pyramids: Receptive
field learning for pooled image features. In CVPR, 2012.

[5] G. Sharma and F. Jurie. Learning discriminative spatial
representation for image classification. In BMVC, 2011.



Existing studies learn the
representations with the
classifiers [3,4,5] .

*Reasonable Improvements.
*Time consuming.

*Low cost-effective.

2,000 core hours for 2% MAP
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Comparison with Related Work ™™

JS(Jensen-Shannon)- Tiling directly
captures representations at lower
BoW level, independent of the

classifier.
*Decent improvements.

*Orders of magnitude faster.
*High cost-effective.

BoW Distribution
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Comparison with Related Work

Existing Work learn the JS Tiling directly captures them at
representations with the lower BoW level, independent of the
classifiers [3,4,5] . classifier.
*Embedded method in Filter method in feature
feature selection. selection.

Efficiency.

*Generalizability.

Classifier

BoW Distribution
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Proposed Approach

* JS(Jensen-Shannon)-Tiling offers a solution because it is:
— Learn salient representations automatically from data.
— Applicably to large-scale datsets.

* |tisan important component in CMU Teams' final
submission in TRECVID 2012 Multimedia Event
Detection[1].
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* A mask is a predefined partition.

Problem Formulation

siase

oL

(a) rectangle (b) diamond
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* More representations can be derived by combining the

tiles in the mask.

* Each representation is called a tiling.

—
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* A mask is a predefined partition.
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* More representations can be derived by combining the

tiles in the mask.

* Each representation is called a tiling.

—

1,427 More
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Problem Formulation

—

* Problem: Find optimal tilings for a given mask.
* Proposed approach:

— Systematically generate all possible tilings from the given
mask.

— Efficiently evaluate each tiling without running classifiers.
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Problem Formulation

—

* Problem: Find optimal tilings for a given mask.
* Proposed approach:

— Systematically generate all possible tilings from the given
mask.

— Efficiently evaluate each tiling without running classifiers.
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Tiling Definition

* Tiling can be defined based on the set-partition theory.
* Divide a set as a union of non-overlapping and non-empty
subsets. {{1,2,3}, {4; 576}:{77879}}

|
|
|
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Tiling Definition pniversity

Tiling can be defined based on the set-partition theory

Divide a set as a union of non-overlapping and non-empty

subsets. {11,2,3},{4,5,6},{7,8,9}}
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e A tlllng can be defined as:

— A complete partition of mask into non-overlapping area
— Each partition (tile) is visually adjacent[3].
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Tiling Definition pniversity

* Tiling can be defined based on the set-partition theory.

Divide a set as a union of non-overlapping and non-empty
subsets.
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! \ \, (c) Not a tiling.
{1 6 7 I 9} identical to the connected
components in the graph.
e A tlllng can be defined as:

— A complete partition of mask into non-overlapping area.
— Each partition (tile) is visually adjacent[3].
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Tiling Generation

NP-hard problem. But given reasonable masks, it is solvable.

Algorithm (Loop until termination):

1) Generate a set partition candidate;
2) Test whether this candidate obeys the adjacency constraint;

Type Parameter #5et Partition | #Tiling | #Equal Tiling
Rectangle 2 X 2 15 12 4
Rectangle 3% 3 21147 1434 12
Rectangle 4 x4 10480142147 1691690 225
Dramond T X1 o T2 T
Diamond 2 x 2 52 16 2
Diamond 3 %X 3 4213597 17326 23
Hexagon 1 52 20 2
Hexagon 1.5 4140 466 7

Ellipse 4 4140 344 5

Ellipse 8 4213597 5504 10

* Visual adjacency constraint significantly reduces the
number of candidates.
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NP-hard problem. But given reasonable masks, it is solvable.

Algorithm (Loop until termination):
1) Generate a set partition candidate;
2) Test whether this candidate obeys the adjacency constraint;

Type Parameter #5et Partition | #Tiling | #Equal Tiling
Rectangle 2 X 2 15 12 4
Rectangle 3% 3 21147 1434 12
Rectangle 4 x4 10480142147 1691690 225
Dramond T X1 o T2 T
Diamond 2 x 2 52 16 =
Diamond 3 %3 4213597 17326 3 6 9
Hexagon 1 52 20
Hexagon 1.5 4140 466 2 5 8

Ellipse 4 4140 344

Ellipse 8 4213597 5504 1 4 7

* Visual adjacency constraint significantly reduces the
number of candidates.
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Problem Formulation

—

* Problem: Find optimal tilings for a given mask.
* Proposed approach:

— Systematically generate all possible tilings from the given
mask.

— Efficiently evaluate each tiling without running classifiers.
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Tiling Evaluation

* Intuitively an optimal tiling would separate the positive and
negative samples with the maximum distance.

* The distance is evaluated w.r.t Kullback-Leibler (KL) divergence.
 Symmetric version called Jensen-Shannon (JS) divergence.

|7 (S)|—1 + -
cost(To) = ATa(S) = 3 (|T(S|)| |
=0 "

T (S) isthe tiling to evaluate.
. . . D
average word distributions of t ., pergenes

Dj D; positive and negative samples
generated by the tiling.

o,
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Tiling Evaluation

* Consistent with the distribution separability principle in [6].

[6]Y. Boureau, J. Ponce, and Y. LeCun. A theoretical analysis of
feature pooling in visual recognition. In ICML, 2010.
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Tiling Evaluation

* Consistent with the distribution separability principle in [6].

 We prove that the negative JS divergence is approximately
an upper bound of the training error of a weighted K-
Nearest Neighbor classifier K = N.

» Justify why the computationally inexpensive divergence can
be a proxy to the computationally expensive classifier.

Minimize -JS
JS Complexity O(N)
KNN (K=N) Minimize KNN

Complexity O(N?)
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Dataset Method MAP Accuracy
SPM [12] ®3.54+0.5 B0.2+0.6
Boureau et al. [2] - 84.940.3
Sharma et al. [19] 85.5+0.7 -
15-Seene | van Gemert et al. [23] - T6.7+0.4
Sharma et al. (18] 81.2+0.6
Yang et al. :ETH - 80.3+£0.9
JS Tiling 88.0+0.3 85.31+0.4
Method MAP Min DCR
s M |12 2d.811.0 =0.0x1.5
SED Winner'11 [H[]: 23.840.8 B7.241.0
JS Tiling 26.5+0.6 85.1+0.9
Method MAP(SIFT) MAP(STIP) |
oM [12] 2b.5 172
MED Winner'12 [29, 21| 27.3 18.7
JS Tiling 30.7 21.2
Method MAP
SPR (17 525
i Winner'07 [15] 54.2
VOC Wang et al. [26] 55.1
Yang et al. [28] 590.6
JS Tiling 05,0

e Consistently outperforms the SPM across datasets on
scene/object recognition and event detection.

 Comparable or even better results with existing methods.
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* 1) Capture more salient spatial representations than SPM.

Rank Predehined Masks Rectangle Masks All Masks
8 11mg Accuracy MNAFP I'thng  Accuracy MAF 11iing  Accuracy MAF
1 HH  79.5+0.7 81.5+06 | = 80.44+0.7 83.24+0.6 | &2 82.4+0.4 85.5+0.4
2 FH = 794106 sistosll R0.4+t0.4  s83.0+t0.6 | BH R1.4+t0.4 843105 |
3 BH  786+04 80.7+04|| B2 80.0+06 824405 80.8+0.5 83.74+0.5
4 1 775+02 80.3+04 | =1 79.9+0.5 82.1+0.7 | B8 80.0+0.3 82.5+0.4
5 BE  77.8+405 T79.6+05 || BH 79.5+0.7 R81.5+0.6 | 5 80.4+0.7 83.240.6
Predefined tilings in Proposed Method
SPM

The results are on 15 scene category dataset.
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e 1) Capture more salient spatial representations than SPM.

Rank I Predehined Masks Rectangle Masks | All Masks
l1img  Accuracy NMAF I'thng  Accuracy MAF I1hng  Accuracy MAF
1 HH  79.54+0.7 81.54+06 | =2 80.4+0.7 83.24+0.6 | &= 82.4+0.4 85.5+0.4
2 HH 794406 81.8+06 | = 80.4+0.4 83.0+0.6 | BE 81.4+0.4  84.3+0.5
3 HH  78.6+04 80.7+04 | B2 80.0+06 824405 |BE 808405 83.7+0.5
4 (1 775+02 803+04 |[(=E  799+05 821+07 |BB  809+03 825404
5 B 77.840.5  79.6+0.5 | EH 79.5+0.7 81.5+0.6 | 5 80.4+0.7 83.2+0.6

e 2) Substantially augment the choices of representations.

I Spatial Pyramid Rectangle Masks All Masks
Accuracy MAF Accuracy MAF Accuracy MAF

0 75.010.3 81.510.6 [ 80.4F0.7 83.210.6 | 82.410.4 85.510.4
1 80.7£0.6 83.3+0.6 | 80.840.5 83.61+0.6 | 82.24+0.5 85.41+0.4
2 || 80.8+£0.6 83.5+£0.5| 81.44+0.6 84.11+0.6 | 82.7+0.6 85.840.4
3 [ 80.TXZ06 822105 | 81.54£0.6 84.11+0.7 | 82.84£0.5 85.840.4
4 79.24+0.6 81.24+0.6 | 81.74+0.6 84.240.6 | 83.5+0.7 86.710.5
7 - - 81.94+0.5 84.6+0.5|85.3+0.4 88.0+0.3

The results are on 15 scene category dataset.
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Learned Tiling on SED dataset

key frame example heat map key frame example heat map
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Best Predefined Tiling Best Learned Tiling

Camera 5

*Heat maps are plotted based on manual annotations.
*Tilings are learned without using annotations.
*Learned tilings are more sensible than predefined tilings.
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Runtime Comparison

Compare the runtime with tiling selection by running
classifiers.

Search a space of 1,434 tilings.

| Dataset | J5 Tiling Linear 5VM Kernel 5VM
15-scene 1.1(h) 1,314(h) 10.874(h)
SED 2.1(h) 2,629(h) 32,862(h)
MED 2.3(h) 4,541 (h) 41,825(h)
Pascal VOC 1.6(h) 1,912(h) 22,346(h)

A single core Intel Core i7 CPU@2.8GHz with 4G memory.
Orders of magnitude faster than running classifiers.
Substantiate the theoretical complexity analysis.
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Summary

* A few messages to take away from this talk:

— JS Tiling provides a efficient solution to
automatically learn salient BoW representations
for large-scale datasets.

— JS Tiling consistently outperforms the spatial
pyramid matching across datasets. Comparable or
even better performance with existing methods.
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Beyond BoW representation

S — 6(X)
QL @ GMM
supervector

- For SIFT-Har, SIFT-Hes, HOG, SURF, and RGB-SIFT
http://www-nlpir.nist.gov/projects/tvpubs/tv12.slides/tvl2.tokyotechcanon.med.slides.pdf

AXES’s Talk @ TRECVID 2013

o Spatial Fisher vector (SFV)

(Krapac et al., ICCVW, 2011)

» encodes first and second moments
of visual word locations

o adds 6 entries for each visual word:
p and o for (x,y,t) coordinates.

o Compared to spatial pyramids:

(Oneats et al., ICCV, 2013) Schematic illustration of the
o similar performance gain spatial Fisher vector for three
» SFV are more compact ‘t}']:r_ﬂﬁ- of visual words (O, #, O] in
an image.

http://www-nlpir.nist.gov/projects/tvpubs/tv13.slides/axes.tvi3.med.slides.pdf
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Beyond spatial representation ™™™

 Temporal tiling

— Determine optimal sliding window sizes.
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* The tilings learned from different masks are not directly
comparable. A practical trick:

— Start with a number of masks.

— Use JS-Tiling to find a couple of salient tilings from the huge
search space.

— Run classifiers on these tilings on the validation dataset, and
fuse promising ones to obtain better performance.

* Sampling bias for small tiles (overestimate the distance).
— Equal tiling can avoid this bias.
— Study the smoothing function. ”
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