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ABSTRACT
Learning video concept detectors automatically from the big but
noisy web data with no additional manual annotations is a novel
but challenging area in the multimedia and the machine learning
community. A considerable amount of videos on the web is associ-
ated with rich but noisy contextual information, such as the title
and other multi-modal information, which provides weak annota-
tions or labels about the video content. To tackle the problem of
large-scale noisy learning, We propose a novel method called Multi-
modal WEbly-Labeled Learning (WELL-MM), which is established
on the state-of-the-art machine learning algorithm inspired by the
learning process of human. WELL-MM introduces a novel multi-
modal approach to incorporate meaningful prior knowledge called
curriculum from the noisy web videos. We empirically study the
curriculum constructed from the multi-modal features of the Inter-
net videos and images. �e comprehensive experimental results on
FCVID and YFCC100M demonstrate that WELL-MM outperforms
state-of-the-art studies by a statically signi�cant margin on learn-
ing concepts from noisy web video data. In addition, the results
also verify that WELL-MM is robust to the level of noisiness in the
video data. Notably, WELL-MM trained on su�cient noisy web
labels is able to achieve a be�er accuracy to supervised learning
methods trained on the clean manually labeled data.
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Figure 1: Overview ofMulti-modalWEbly-Labeled Learning
(WELL-MM). �e algorithm jointly models the prior knowl-
edge extracted from web labels and the current learned
model at each iteration to overcome the noise labels. {xi }ni=1
are input samples and their current weights are determined
by {vi }ni=1. Colored samples are the samples with nonzero
weights at the current iteration. �e blue line indicates the
feedback from the previous objective function value.

1 INTRODUCTION
Millions of videos are being uploaded to the Internet every day.
�ese videos capture di�erent aspects of multimedia content about
our daily lives. Automatically categorizing videos into concepts,
such as people, actions, objects, etc., is an important topic. Recently
many studies have been proposed to tackle the problem of concept
learning [1, 6, 10, 14, 21, 23, 29, 30].

Many datasets acquire the clean concept labels via annotators.
�ese datasets include ImageNet [10], TRECVID MED [36] and
FCVID [22]. Collecting such datasets requires signi�cant human
e�ort, which is particularly expensive for video data. As a result,
the labeled video collection is usually much smaller than the image
collection. For example, FCVID [22], only contains about 0.09
million labels on 239 concept classes, much less than the 14 million
labels on over 20,000 classes in the image collection ImageNet [10].
On the other hand, state-of-the-art concept models utilize deep
neural networks [23, 46], which need more data to train. However,
training only on manually labeled clean data seem insu�cient for
large-scale concept learning.
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Images or videos on the web o�en contain rich contextual in-
formation, such as their titles or descriptions. We can infer the
label by the metadata. Figure 2 shows an example of a video with
inferred concept label “walking a dog”. In this paper, we call the
samples with inferred labels weakly labeled or webly labeled. �e
webly-labeled data are easy to collect and thus usually orders-of-
magnitude larger than manually-labeled data. However, the web
labels are very noisy and have both low accuracy and low recall.

Concept learning over weakly labeled data becomes popular
as it allows for large-scale learning on big data. However, these
methods have only focused on utilizing a single text modality to
model the noisy labels [4, 8, 13, 14, 27]. For example, in Figure 2,
the textual metadata is useful but also contain lots of noises. In
fact, the video is of multiple modalities and our intuition is that
the inference obtained from multiple modalities is more reliable
than that from a single text modality. For example, we can more
con�dent to say this video is about “walk a dog” if we spot the
text in the title, hear the words “good boy” in the speech, and
see a dog in some key frames. To this end, we can leverage the
prior knowledge in automatically extracted multi-modal features
from the video content such as pre-trained still image detectors,
automatic speech recognition and optical character recognition. In
some cases when videos have li�le textual metadata, multi-modal
knowledge become the only useful clues in concept learning.

Recent studies on weakly labeled concept learning show promis-
ing results. However, since existing approaches only focuses on
a single modality, two important questions have yet: 1) what are
the important multi-modal prior knowledge, except textual meta-
data, for modeling noisy labels? 2) how to integrate the multiple
modalities into concept learning in a theoretically sound manner?

In this paper, to utilize multi-modal prior knowledge for concept
learning, we propose a learning framework called Multi-modal
WEbly-Labeled Learning (WELL-MM). �e learning framework
is motivated by human learning, in which the learner starts from
learning easier aspects of a concept, and then gradually take more
complex examples into the learning process[3, 20, 25]. Speci�cally.
WELL-MM learns a concept detector iteratively from �rst using a
few samples with more con�dent labels, then gradually incorporate
more samples with noisier labels. Figure 1 shows the overview of
the proposed framework. �e algorithm integrates multi-modal
prior knowledge, which is derived from the multi-modal video and
image features, into the dynamic learning procedure. �e idea of
curriculum and self-paced learning paradigm has been proved to
be e�cient to deal with noise and outliers [8, 18, 25]. Our proposed
method is the �rst to generalize the learning paradigm to leverage
multi-modal prior knowledge into concept learning. Experimental
results show that multi-modal prior knowledge is important in
concept learning over noisy data. �e proposed WELL-MM outper-
forms other weakly labeled learning methods on three real-world
large-scale datasets, and obtains the state-of-the-art results with
recent deep learning models.

�e contribution of this paper is threefold. First, we propose a
novel solution to address the problem of weakly labeled data learn-
ing through a general framework that considers multi-modal prior
knowledge. We show that the proposed WELL-MM not only outper-
forms state-of-the-art learning methods on noisy labels, but also,
notably, achieves comparable results with models trained using

Figure 2: Multi-modal prior knowledge from web video.

manual annotation on one of the video dataset. Second, we provide
valuable insights by empirically investigating di�erent multi-modal
prior knowledge for modeling noisy labels. Experiments validate
that by incorporating multi-modal information, our method is ro-
bust against certain levels of noisiness. Finally, the e�cacy and
the scalability have been demonstrated on three public large-scale
benchmarks, which include datasets on both Internet videos and
images. �e promising results suggest that detectors trained on
su�cient weakly labeled videos may outperform detectors trained
on existing manually labeled datasets.

2 RELATEDWORK
Curriculum and Self-paced Learning: Recently a learning par-
adigm called curriculum learning (CL) was proposed by Bengio et
al., in which a model is learned by gradually incorporating from
easy to complex samples in training so as to increase the entropy
of training samples [3]. A curriculum determines a sequence of
training samples and is o�en derived by predetermined heuris-
tics in particular problems. For example, Chen et al. designed a
curriculum where images with clean backgrounds are learned be-
fore the images with noisy backgrounds [8], i.e. their method �rst
builds a feature representation by a Convolutional Neural Network
(CNN) on images with clean background and then they �ne tune
the models on images with noisy background. In [41], the authors
approached grammar induction, where the curriculum is derived in
terms of the length of a sentence. Because the number of possible
solutions grows exponentially with the length of the sentence, and
short sentences are easier and thus should be learned earlier.

�e heuristic knowledge in a problem o�en proves to be useful.
However, the curriculum design may lead to inconsistency between
the �xed curriculum and the dynamically learned models. �at is,
the curriculum is predetermined a prior and cannot be adjusted
accordingly, taking into account the feedback about the learner. To
alleviate the issue of CL, Kumar et al. designed a learning paradigm,
called self-paced learning (SPL) [25]. SPL embeds curriculum design
as a regularizer into the learning objective. Compared with CL,
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SPL exhibits two advantages: �rst, it jointly optimizes the learning
objective with the curriculum, and thus the curriculum and the
learned model are consistent under the same optimization problem;
second, the learning is controlled by a regularizer which is indepen-
dent of the loss function in speci�c problems. �is theory has been
successfully applied to various applications, such as matrix fac-
torization [48], action/event detection [19], domain adaption [44],
tracking [43] and segmentation [26], reranking [18], etc.

Learning Detectors in Web Data: Many recent studies have
been proposed to utilize a large amount of noisy data from the
Internet. For example, [35] proposed a Never-Ending Language
Learning (NELL) paradigm and built adaptive learners that make
use of the web data by learning di�erent types of knowledge and
beliefs continuously. In the image domain, existing methods try to
tackle the problem of constructing quali�ed training sets based on
the search results of text or image search engines [9, 11, 30, 47]. For
example, NEIL [9] followed the idea of NELL and learned from web
images to form a large collection of concept detectors iteratively
via a semi-supervised fashion. By combining the classi�ers and
the inter-concept relationships it learned, NEIL can be used for
scene classi�cation and object detection task. [11] introduced a
webly-supervised visual concept learning method that automati-
cally learns a large amount of models for a wide range of variations
within visual concepts. �ey discovered concept variances through
the vocabulary of online books, and then downloaded images based
on text-search from the web to train object detection and localiza-
tion models. [30] presented a weakly-supervised method called
Baby Learning for object detection from a few training images and
videos. �ey �rst embed the prior knowledge into a pre-trained
CNN. When given very few samples for a new concept, a simple de-
tector is constructed to discover much more training instances from
the online weakly labeled videos. As more training samples are
selected, the concept detector keeps re�ning until a mature detector
is formed. [47] proposed a noise estimation method for training
convolutional neural network with large-scale e-commerce images.
Another recent work in image domain [8] proposed a webly super-
vised learning of Convolutional Neural Network. �ey utilized easy
images from search engine like Google to bootstrap a �rst-stage
network and then used noisier images from photo-sharing websites
like Flickr to train an enhanced model.

In video domain, only a few studies [12, 16, 46] have been pro-
posed for noisy data learning since training robust video concept
detectors is more challenging than the problem in the image do-
main. [12] tackled visual event detection problem by using SVM
based domain adaptation method in web video data. [16] described
a fast automatic video retrieval method using web images. Given a
targeted concept, compact representations of web images obtained
from search engines like Google, Flickr are calculated and matched
to compact features of videos. Such method can be utilized without
any pre-de�ned concepts. [46] discussed a method that exploits
the YouTube API to train large-scale video concept detectors on
YouTube. �e method utilized a calibration process and hard neg-
ative mining to train a second order mixture of experts model in
order to discover correlations within the labels.

Most of the existing methods are heuristic approaches as it is un-
clear what objective is being optimized on the noisy data. Moreover,
results obtained from the web search results is just one approach to

acquire prior knowledge or curriculum. To the best of our knowl-
edge, there have been no systematical studies on exploiting the
multi-modal prior knowledge in video concept learning on noisy
data. Since search engine algorithm is changing rapidly, it is unclear
that how noisy the web labels are and how the level of noisiness in
the data will a�ect performance. In this paper, we proposed a theo-
retically justi�ed method with a clear framework for curriculum
constructing and model learning. We also empirically demonstrate
its superior performance over representative existing methods and
systemically verify that WELL-MM is robust against the level of
noisiness of the video data.

3 MULTI-MODALWEBLY-LABELED
LEARNING (WELL-MM)

3.1 Problem Description
In this paper, following [46], we consider a concept detector as a clas-
si�er and our goal is to train concept detectors from webly-labeled
video data without any manually annotated labels. Given a collec-
tion of training samples with noisy labels, we do not make any as-
sumption over the underlying noise distribution. Formally, we rep-
resent the training set as D = {(xi , zi , ỹi )}ni=1, where {x1, · · · , xn }
are the d-dimensional features of the training set, and {z1, · · · , zn }
represent each sample’s corresponding noisy web labels. We as-
sume that the noisy labels are given. �e noisy web labels are o�en
automatically inferred using the sample’s textual metadata provided
by its uploader, or from other modalities such as pre-trained con-
volutional neural network over still images[7], Automatic Speech
Recognition [37], or Optical character recognition [40]. For exam-
ple, for instance, a video might have a noisy label “cat” as its title
and speech both contain the word cat. �e ỹi ⊂ Y is the inferred
concept label set for the ith observed sample based on its noisy
web label, and Y denotes the full set of target concepts. In our
experiment, to simplify the problem, we employ one-versus-all
strategy for multi-class classi�cation, and discuss our method in
the context of binary classi�cation over the noisy web labels.

3.2 Model
3.2.1 Objective Function. In this section, we propose a model

called Multi-modal WEbly-Labeled Learning (WELL-MM) to lever-
age multi-modal prior knowledge for weakly labeled data. Formally,
given the training setDmentioned previously, LetL(ỹi ,д(xi ,w)),denote
the loss function which calculates the cost between the inferred
label ỹi and the estimated label given by the decision function
д(xi ,w). Here w represents the model parameters. Our objective
function is to jointly learn the model parameter w and the latent
weight variable v = [v1, · · · ,vn]T by:

min
w,v∈[0,1]n

E(w, v; λ,Ψ) =
n∑
i=1

viL(ỹi ,д(xi ,w)) + f (v; λ),

subject to v ∈ Ψ

(1)

where the latent weight variable v = [v1, · · · ,vn]T represents the
inferred labels’ con�dence, and thus re�ects the learning sequence
of samples. In order to learn concept detectors in noisy data, we
utilize the self-paced regularizer f [20] to control the learning
process, where f is expect to assign greater weights to samples with
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Figure 3: Curriculum Extraction Example. We automatically extract information using meaningful prior knowledge from
several modalities and fuse them to get curriculum for WELL-MM. Our method makes use of text, speech, visual cues while
common methods like search engine only extract textual information.

con�dent labels. For simplicity, we consider the linear regularizer
Eq. (3) proposed in [20]:

f (v; λ) = 1
2λ

n∑
i=1

(v2
i − 2vi ), (2)

λ ∈ (0, 1) is a hyper-parameter that controls the pace of model
training, which resembles the ”age” of the model. We set λ to be
small at the beginning and only samples of with small loss will
be considered in training. As λ grows, more samples with larger
loss will be gradually included. As stated in related studies [28, 33],
the self-paced in Eq. (3) corresponds to a robust loss function. �e
robust loss in our problem tends to depress samples with noisy
labels or outliers and thus may be instrumental in avoiding bad
local minima.

In order to utilize the rich contextual information in the noisy
data, we embed the multi-modal prior knowledge derived from
the web labels z into a convex curriculum region Ψ for the latent
weight variables. �e shape of the region weakly implies the learn-
ing sequence, where favored samples have larger expected values.
Generally, Ψ can be represented by Ψ = {v | c (v, a) ≤ b}, where
a = [a1, · · · ,an] is the parameters of the region. In this paper, we
use a linear constraint to form the curriculum region [20]:

Ψ = {v |
n∑
i=1

aivi ≤ b} (3)

�e curriculum region is introduced to leverage the prior knowl-
edge about the noisy labels and, as demonstrated in our experi-
ments, is a crucial factor in weakly labeled data learning. We use
multi-modal information to derive the probabilities of samples be-
ing positive of a class and if the probabilities are below a threshold
(in our experiments it is set at zero) the samples will be consider as
negatives. We assign value to ai in correlated to samples ’s proba-
bilities being in the class, and b is set to 1. We use curriculum as
a warm start in training, and set µ to zero a�er the �rst iteration.
Since we empirically observed that curriculum constraints mostly
bene�t the �rst few iterations. We will discuss how to derive the
multi-modal curriculum in details in the following section.

Eq. (1) is di�cult to minimize over big data due to the constraints.
In this paper, we propose to relax the constraints by introducing a
Lagrange multiplier µ. �e objective function then becomes:

min
w,v∈[0,1]n

E(w, v; λ, a,b, µ ) =

n∑
i=1

viL(ỹi ,д(xi ,w)) +
1
2λ

n∑
i=1

(v2
i − 2vi ) + µ (

n∑
i=1

aivi − b),

subject to µ ≥ 0

(4)

�e proposed Eq. (4) has two bene�ts over Eq. (1). First it enables
the large-scale training on noisy data. �is is important because
as our experiments show that training on noisy data can outper-
form training on manually labeled data only when the noisy data
are orders-of-magnitude larger. Second, it may tolerate the noise
introduced in the curriculum region.

3.2.2 Multi-modal Curriculum. In this section we discuss the
details on how to construct the curriculum region Ψ. Ψ is a feasible
region that embeds the multi-modal prior knowledge extracted
from the webly-labeled data as shown in Figure. 3. It geometri-
cally corresponds to a convex feasible space for the latent weight
variable. Given a set of training samples X = {xi }ni=1 with corre-
sponding noisy labels Z = {zi }ni=1, we want to extract the learning
curriculum based on how related the training samples are to the
target classes, which is modeled by the probability of the samples
being the inferred class label (since we don’t have the actual label
in webly learning). �e training samples with a greater value of
probability mean that they are more con�dent to belong to the true
class and should be learned earlier. Similar to Information Retrieval
theory [31], here we use random variable z to represent the noisy
web labels, y to represent the label classes, and the curriculum for
a sample is then determined by:

P(z | y) = P(y | z)P(z)/P(y) (5)

Since P(y) is the same for all samples, it can be regarded as a con-
stant. �e prior probability of a web video P(z) can be implemented
with the duration, the view count and comments about the video. In
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this paper we treat the prior as uniform so it can be ignored as well.
�erefore, we calculate the curriculum simply based on P(y | z),
the probability of the sample being class ỹi given the noisy label.
Since we want to incorporate the multi-modal prior information,
we calculate the curriculum from:

P(y | z) ∝
∑
m

θmP(y | zm) (6)

We use random variable zm to represent them-th modality of the
noisy labels for a sample and θm is the predetermined weight for
modality m. In this paper, other than the textual metadata, we
also utilize other modalities such as Automatic Speech Recognition
(ASR) [37], Optical Character Recognition (OCR) [40] and basic
image detector pre-trained on still images [38] (in this paper we
use VGG net [39], extract keyframe-level image classi�cation re-
sults and average them to get video-level results). �erefore the
total number of the modalities is 4. We compare common ways
to extract curriculum from web data for concept learning to the
proposed novel method that utilizes state-of-the-art topic modeling
techniques in natural language processing.

In the following methods (Word Hard Matching and Latent Topic
with Word Embedding), we �rst extract bag-of-words features from
di�erent modalities for each video and then match them using spe-
ci�c matching methods to the concept words to get the probabilities
in Eq. (6) as shown in Figure 3.

WordHardMatching We build curriculum directly using exact
word matching or stemmed word matching between the textual
metadata of the noisy videos to the targeted concept names. �is is
the same method as stated in Webly Labeled Learning [28]. Noted
that this method only utilizes one modality.

YouTubeTopicAPI �e YouTube topic API is utilized to search
for videos that are related to the concept words. �e topic API uses
textual information of the uploaded videos to obtain related topics
of the videos from Freebase. �is is the method used in [46].

SearchEngine �e curriculum is built using the search result
from a text-based search engine [32]. It is similar to related web-
search based methods.

Ours We build the curriculum based on the latent topic we
learned from the noisy label. We incorporate Latent Dirichlet Al-
location (LDA) [5] to determine how each noisy labeled video is
related to each target concept. �e intuition is that each web video
consists of mixtures of topics (concepts), and each topic is charac-
terized by a distribution of words. We impose asymmetric priors
over the word distribution so that each learned topic will be seeded
with particular words in our target concept. For example, a topic
will be seeded with words ”make, phone, cases” for the target con-
cept ”MakingPhoneCases”. we use the online variational inference
algorithm from [17]. An example of the learned latent topic word
distribution is shown on the right in Figure 3. We then match noisy
labels from each modality zim to the latent topic word distribution
using word embedding so� matching [34]. �e word embedding is
pre-trained using Google News data.

Figure 3 shows an example of the noisy web video data and how
the curriculum is extracted with di�erent methods. Our method
can utilize information from di�erent modalities while common
methods like search engine only consider textual information. We

compare the performance of di�erent ways of curriculum design
by training detectors directly in Section 4.

3.3 Algorithm
As proven in recent studies [25, 33], Eq. (1) is a biconvex optimiza-
tion problem. We utilize the alternative convex search algorithm
(ACS) [2] to optimize Eq. (1) following [20, 25]. Algorithm 1 takes
the input of the training set, an instantiated self-paced regularizer
and the curriculum constraint function; it outputs an optimal model
parameter w. it derives the curriculum region from multi-modal
noisy labels Z ∈ Rm×n and forms the curriculum constraint func-
tion. �en, it initializes the latent weight variables in the feasible
region. In the while loop, the algorithm alternates between two
steps until it �nally converges: In step 4 given the most recent v∗,
the algorithm learns the optimal model parameters; In step 5, we
�x the w∗ and the algorithm learns the optimal weights v∗ for each
sample. Starting in the beginning, the model grows from learning
with easy (less noisy) samples with a small model ”age”. �e model
”age” is gradually increased so that the model can incorporate more
noisy samples in the training and become more robust over time.
Step 4 can be implemented by existing o�-the-shelf supervised
learning methods such as the Support Vector Machine or back prop-
agation. Gradient-based methods can be used to solve the convex
optimization problem in Step 5. According to [15], the alterna-
tive search in Algorithm 1 converges as the objective function is
monotonically decreasing and is bounded from below.

Algorithm 1: Multi-modal WEbly-Labeled Learning
input : Input dataset D = {X,Z, Ỹ}, self-paced function f

and a curriculum constraint function c
output :Model parameter w

1 Derive curriculum region from Z ∈ Rm×n into a,b;
2 Initialize v∗, λ in the curriculum region;
3 while not converged do
4 Update w∗ = arg minw E(w, v∗; λ, a,b);
5 Update v∗ = arg minv E(w∗, v; λ, a,b);
6 if λ is small then increase λ by the step size;
7 end
8 return w∗

4 EXPERIMENTS
In this section, we evaluate our method WELL-MM for learning
video detectors on noisy labeled data. We �rst conduct our method
on noisy learning in image domain. �e e�cacy of our methods
are mainly veri�ed on two major public benchmarks: FCVID and
YFCC100M, where FCVID is by far one of the biggest manually
annotated video dataset [22], and the YFCC100M dataset is the
largest multimedia benchmark [45].

4.1 Experimental Setup
Datasets, Features and Evaluation Metrics Previous studies on
noisy learning in image domain have been focusing on noise esti-
mation [42, 47]. We compare our method with them on the synthe-
sized noisy dataset CIFAR-10 generated using code from [47]. We
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report accuracy on each se�ing along with the results reported in
papers [42, 47] experimented on the same dataset.

Fudan-columbia Video Dataset (FCVID) contains 91,223 YouTube
videos (4,232 hours) from 239 categories. It covers a wide range of
concepts like activities, objects, scenes, sports, DIY, etc. Detailed
descriptions of the benchmark can be found in [22]. Each video is
manually labeled to one or more categories. In our experiments,
we do not use the manual labels in training, but instead we auto-
matically generate the web labels according to the concept name
appearance in the video metadata. �e manual labels are used only
in testing to evaluate our and the baseline methods. Following [22],
the standard train/test split is used. �e second set is YFCC100M
[45] which contains about 800,000 videos on Yahoo! Flickr with
metadata such as the title, tags, the uploader, etc. �ere are no man-
ual labels on this set and we automatically generate the curriculum
from the metadata in a similar way. Since there are no annotations,
we train the concept detectors on the most 101 frequent latent top-
ics found in the metadata. �ere are totally 47,397 webly labeled
videos on the 101 concepts for training.

On FCVID, as the manual labels are available, the performance
is evaluated in terms of the precision of the top 5 and 10 ranked
videos (P@5 and P@10) and mean Average Precision (mAP) of 239
concepts. On YFCC100M, since there are no manual labels, for
evaluation, we apply the detectors to a third public video collection
called TRECVID MED which includes 32,000 Internet videos [36].
We apply the detectors trained on YFCC100M to the TRECVID
videos and manually annotate the top 10 detected videos returned
by each method for 101 concepts.

Implementation Details We build our method on top of a
pre-trained convolutional neural network as the low-level features
(VGG network [39], except in the image experiment we use AlexNet
[24] as in [47]). We extract the key-frame level features and create
a video feature by the average pooling. �e same features are used
across di�erent methods on each dataset. �e concept detectors are
trained based on a hinge loss cost function by SVM. Algorithm 1
is used to train the concept models iteratively and the λ stops
increasing a�er 100 iterations. At each iteration, we apply a dropout
of 0.5 when sampling negative samples. We automatically generate
curriculum labels based on the video metadata, ASR, OCR and VGG
net 1,000 classi�cation results using latent topic modeling with
word embedding matching as shown in Section 3.

Baselines in video domain experiment�e proposed method
is compared against the following �ve baseline methods which
cover both the classical and the recent representative learning al-
gorithms on webly-labeled data. BatchTrain trains a single SVM
model using all samples in the multi-modal curriculum built with
our method as described in section 3.2.2. Self-Paced Learning (SPL)
is a classical method where the curriculum is generated by the
learner itself [25]. BabyLearning is a recent method that simulates
baby learning by starting with few training samples and �ne-tuning
using more weakly labeled videos crawled from the search engine
[30]. GoogleHNM is a hard negative mining method proposed by
Google [46]. It utilizes hard negative mining to train a second order
mixture of experts model according to the video’s YouTube topics.
FastImage [16] is a video retrieval method that utilizes web images
from search engine to match to the video with re-ranking. WELL-
MM is the proposed method. �e hyper-parameters of all methods

Table 1: Comparison of di�erent curriculum using the
BatchTrain learning method.

Method P@5 P@10 mAP
WordHardMatching 0.782 0.763 0.469
YouTubeTopicAPI 0.587 0.563 0.315
SearchEngine 0.723 0.713 0.413
WordEmbedding 0.790 0.774 0.462
LatentTopic 0.731 0.716 0.409
WELL-MM 0.838 0.820 0.486

including the baseline methods are tuned on the same validation
set. On FCVID, the set is a standard development set with manual
labels randomly selected from 10% of the training set (No training
was done using ground truth labels) whereas on YFCC100M it is
also a 10% proportion of noisy training set.

4.2 Experiments on FCVID
Curriculum Comparison As discussed in Section 3.2.2, we com-
pare di�erent ways to build curriculum for noisy label learning.
Here we also compare their e�ectiveness by training concept de-
tectors directly using the curriculum labels. �e batch train model
is used for all generated curriculum labels. In Table 1 we show the
batch trained models’ precision at 5, 10 and mean average precision
on the test set of FCVID. For WELL-MM, we extract curriculum
from di�erent modalities as shown in Section 3.2.2, and combine
them using linear weights. �e weights are hyper-parameters that
are tuned on the validation set, and the optimal weights for textual
metadata, ASR, image classi�cation and OCR results are 1.0, 0.5, 0.5
and 0.05, respectively. �is a�empt to combining curriculum from
di�erent modalities serves as a pilot study. However, experiments
show that such simple linear weighting is already e�ective with
WELL-MM. Further research in this direction is le� for future work.
We also compare WELL-MM with using only latent topic modeling
and word embedding so� matching. Results show that the cur-
riculum generated by combining latent topic modeling and word
embedding using multi-modal prior knowledge is the most accurate,
which indicates our claim of exploiting multi-modal information is
bene�cial.

BaselineComparison Table 2 compares the precision and mAP
of di�erent methods where the best results are highlighted. As we
see, the proposed WELL-MM signi�cantly outperforms all base-
line methods, with statistically signi�cant di�erence at p-level of
0.05. Comparing SPL with BatchTrain, it shows that the self-paced
learning model over-�ts to the noise without prior knowledge and
performs worse than the simple BatchTrain model. Comparing
WELL-MM with SPL and BatchTrain, the e�ect of incorporating
multi-modal curriculum makes a signi�cant di�erence in terms of
performance, which suggests the importance of prior knowledge
and preventing over-��ing in webly learning. �e promising exper-
imental results substantiate the e�cacy of the proposed method.

Robustness toNoise Comparison In this comparison we man-
ually control the noise level of the curriculum in order to systemat-
ically verify how our methods would perform with respect to the
noise level within the web data. To this end, we randomly select
video samples with ground truth labels for each concept, so that
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Figure 4: Illustration of representative videos selected by WELL-MM at di�erent iterations

Table 2: Baseline comparison on FCVID

Method P@5 P@10 mAP
BatchTrain 0.838 0.820 0.486
FastImage [16] - - 0.284
SPL [26] 0.793 0.754 0.414
GoogleHNM [46] 0.781 0.757 0.472
BabyLearning [30] 0.834 0.817 0.496
WELL-MM 0.918 0.906 0.615

the noise level of the curriculum labels are set at 20%, 40%, 60%,
80% and we �x the recall of all the labels. We then train WELL-
MM using such curriculum and test them on the FCVID testing
set. We also compare WELL-MM to three other methods with the
same curriculum, among them GoogleHNM is a recent method to
train video concept detector with large-scale data. We exclude
BabyLearning, which relies on the returned results by the search
engine, since in this experiment the curriculum is �xed. As shown
in Table 3, as the noise level of the curriculum grows, WELL-MM
maintains its performance while other methods drop signi�cantly.
Speci�cally, when the noise level of curriculum increased from 60%
to 80%, other methods’ mAP drops 46.5% on average while WELL-
MM’s mAP only drops 19.1% relatively. It shows that WELL-MM is
robust against di�erent level of noise, which shows great potential
in larger scale webly-labeled learning as the dataset gets bigger, the
noisier it may become.

Table 3: WELL-MM performance with curriculum consist-
ing of multiple arti�cial noise levels.

Method
Noise Level 20% 40% 60% 80%

BatchTrain 0.592 0.538 0.463 0.232
SPL 0.586 0.515 0.396 0.184
GoogleHNM 0.602 0.552 0.477 0.304
WELL-MM 0.673 0.646 0.613 0.496

Noisy Dataset Size Comparison To investigate the potential
of concept learning on webly-labeled video data, we apply the

methods on di�erent sizes of subsets of the data. Speci�cally, we
randomly split the FCVID training set into several subsets of 200,
500, 1,000, and 2,000 hours of videos, and train the models on each
subset without using manual annotations. �e models are then
tested on the same test set. Table 4 lists the average results of each
type of subsets. As we see, the accuracy of WELL-MM on webly-
labeled data increases along with the growth of the size of noisy
data while other webly learning methods’ performance tend to be
saturated.

Comparing to the methods trained using ground truth, In Table 4,
WELL-MM trained using the whole dataset (2000 hours) outper-
forms Static CNN (trained using manual labels) using around 1400
hours of data and rDNN-F (trained using manual labels with three
features) trained using around 450h of data. And since the incre-
mental performance increase of WELL-MM is close to linear, we
conclude that with su�cient webly-labeled videos (which are not
hard to obtain) WELL-MM will be able to outperform the rDNN-F
trained using 2000h of data, which is currently the largest manual
labeled dataset.

Table 4: MAP comparison ofmodels trainedusingweb labels
and ground-truth labels on di�erent subsets of FCVID. �e
methods marked by * are trained using human annotated
labels.

Method
Dataset Size 200h 500h 1000h 2000h

BatchTrain 0.364 0.422 0.452 0.486
SPL [26] 0.327 0.379 0.403 0.414
GoogleHNM [46] 0.361 0.421 0.451 0.472
BabyLearning [30] 0.390 0.447 0.481 0.496
WELL-MM 0.487 0.554 0.595 0.615
Static CNN[22]* 0.485 0.561 0.604 0.638
rDNN-F[22]* 0.550 0.620 0.650 0.754

4.3 Experiments on CIFAR-10
Following [47], we generate synthesized noisy training data with a
noise level of 30%, 40% and 50% on CIFAR-10 dataset. �e models
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Table 5: Experimental results on CIFAR-10

Methods
Noise Level 30% 40% 50%

Noisy-CNN [42] 0.697 0.667 0.634
Massive-Learning [47] 0.698 0.668 0.630
WELL-MM 0.709 0.700 0.682

are trained on noisy data and tested on clean data. Classi�cation
Accuracy is reported. Our method doesn’t assume any kind of noise
distribution, while Noisy-CNN [42] assumes the noise distribution
depends on classes and Massive-Learning [47] assumes it also de-
pends on the image content. We show the experimental results in
Table 5. �e results show that WELL-MM outperforms the other
methods at all noise levels. More interestingly, as the noise level
rises from 30% to 50%, the performance of Massive-Learning [47]
drops about 9.8%, while WELL-MM only drops 3.8%. It shows that
WELL-MM can also e�ectively learn robust concept detectors in
image domain.

4.4 Experiments on YFCC100M
In the experiments on YFCC100M, we train 101 concept detectors
on YFCC100M and test them on the TRECVID MED dataset which
includes 32,000 Internet videos. Since there are no manual labels,
to evaluate the performance, we manually annotate the top 10
videos in the test set and report their precisions in Table 6. �e
MED evaluation is done by four annotators and the �nal results are
averaged from all annotations. �e Fleiss’ Kappa value for these
four annotators is 0.64. A similar pa�ern can be observed where
the comparisons substantiate the rationality of the proposed webly
learning framework. Besides, the promising results on the largest
multimedia set YFCC100M verify the scalability of the proposed
method.

Table 6: Baseline comparison on YFCC100M

Method P@3 P@5 P@10
BatchTrain 0.535 0.513 0.487
SPL [26] 0.485 0.463 0.454
GoogleHNM [46] 0.541 0.525 0.500
BabyLearning [30] 0.548 0.519 0.466
WELL-MM 0.667 0.663 0.649

4.5 �alitative Analysis
In this section we show training examples of WELL-MM. In Fig-
ure 4, we demonstrate the positive samples that WELL select at
di�erent stage of training the concept ”baseball” and ”birthday”. For
the concept ”baseball”, at the early stage (1/93, 25/93), WELL-MM
selects easier and clearer samples such as the ones with camera
directly pointing at the playground, while at the later stage (75/93,
93/93) WELL-MM starts to train with harder samples with di�erent
lighting conditions and untypical samples for the concept. For the
concept ”birthday”, as we see, at later stage of the training, com-
plex samples for birthday event like a video with two girl singing

birthday song (75/84) and a video of celebrating birthday during
hiking (84/84) are included in the training, while at the early stage,
only typical ”birthday” videos with birthday cake and candles are
included.

5 CONCLUSIONS
In this paper, we proposed a novel method called WELL-MM for
webly labeled video data learning. WELL-MM extracts multi-modal
informative knowledge from noisy weakly labeled video data from
the web through a general framework and achieves the best perfor-
mance only using webly-labeled data on two major video datasets.
�e comprehensive experimental results demonstrate that WELL-
MM outperforms state-of-the-art studies by a statically signi�cant
margin on learning concepts from noisy web video data. In addi-
tion, the results also verify that WELL-MM is robust to the level
of noisiness in the video data. �e result suggests that with more
webly-labeled data, which is not hard to obtain, WELL-MM can
potentially outperform models trained on any existing manually-
labeled data.
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[3] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. 2009.
Curriculum learning. In ICML.

[4] Alessandro Bergamo and Lorenzo Torresani. 2010. Exploiting weakly-labeled
web images to improve object classi�cation: a domain adaptation approach. In
NIPS.

[5] David M Blei, Andrew Y Ng, and Michael I Jordan. 2003. Latent dirichlet alloca-
tion. the Journal of machine Learning research 3 (2003), 993–1022.

[6] Shih-Fu Chang, Dan Ellis, Wei Jiang, Keansub Lee, Akira Yanagawa, Alexander C
Loui, and Jiebo Luo. 2007. Large-scale multimodal semantic concept detection
for consumer video. In Proceedings of the international workshop on Workshop on
multimedia information retrieval.

[7] Ken Chat�eld, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. 2014.
Return of the devil in the details: Delving deep into convolutional nets. In BMVC.

[8] Xinlei Chen and Abhinav Gupta. 2015. Webly supervised learning of convolu-
tional networks. In ICCV.

[9] Xinlei Chen, Abhinav Shrivastava, and Abhinav Gupta. 2013. Neil: Extract-
ing visual knowledge from web data. In Proceedings of the IEEE International
Conference on Computer Vision.

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Ima-
genet: A large-scale hierarchical image database. In CVPR.

[11] Santosh K Divvala, Alireza Farhadi, and Carlos Guestrin. 2014. Learning every-
thing about anything: Webly-supervised visual concept learning. In CVPR.

[12] Lixin Duan, Dong Xu, IW-H Tsang, and Jiebo Luo. 2012. Visual event recognition
in videos by learning from web data. Pa�ern Analysis and Machine Intelligence,
IEEE Transactions on 34, 9 (2012), 1667–1680.

[13] Robert Fergus, Li Fei-Fei, Pietro Perona, and Andrew Zisserman. 2005. Learning
object categories from Google’s image search. In ICCV.

[14] Pierre Garrigues, Sachin Farfade, Hamid Izadinia, Ko� Boakye, and Yannis Kalan-
tidis. 2016. Tag Prediction at Flickr: a View from the Darkroom. arXiv preprint
arXiv:1612.01922 (2016).

[15] Jochen Gorski, Frank Pfeu�er, and Kathrin Klamroth. 2007. Biconvex sets and
optimization with biconvex functions: a survey and extensions. Mathematical
Methods of Operations Research 66, 3 (2007), 373–407.



Leveraging Multi-modal Prior Knowledge … ICMR ’17, , June 6–9, 2017, Bucharest, Romania

[16] Xintong Han, Bharat Singh, Vlad I Morariu, and Larry S Davis. 2015. Fast
Automatic Video Retrieval using Web Images. arXiv preprint arXiv:1512.03384
(2015).

[17] Ma�hew Ho�man, Francis R Bach, and David M Blei. 2010. Online learning for
latent dirichlet allocation. In advances in neural information processing systems.
856–864.

[18] Lu Jiang, Deyu Meng, Teruko Mitamura, and Alexander G Hauptmann. 2014.
Easy Samples First: Self-paced Reranking for Zero-Example Multimedia Search.
In MM.

[19] Lu Jiang, Deyu Meng, Shoou-I Yu, Zhenzhong Lan, Shiguang Shan, and Alexander
Hauptmann. 2014. Self-Paced Learning with Diversity. In NIPS.

[20] Lu Jiang, Deyu Meng, Qian Zhao, Shiguang Shan, and Alexander G Hauptmann.
2015. Self-paced curriculum learning. In AAAI.

[21] Lu Jiang, Shoou-I Yu, Deyu Meng, Yi Yang, Teruko Mitamura, and Alexander G
Hauptmann. 2015. Fast and accurate content-based semantic search in 100m
internet videos. In Proceedings of the 23rd ACM international conference on Multi-
media.

[22] Yu-Gang Jiang, Zuxuan Wu, Jun Wang, Xiangyang Xue, and Shih-Fu Chang.
2015. Exploiting Feature and Class Relationships in Video Categorization with
Regularized Deep Neural Networks. arXiv preprint arXiv:1502.07209 (2015).

[23] Andrej Karpathy, George Toderici, Sachin She�y, Tommy Leung, Rahul Suk-
thankar, and Li Fei-Fei. 2014. Large-scale video classi�cation with convolutional
neural networks. In CVPR.

[24] Alex Krizhevsky, Ilya Sutskever, and Geo�rey E Hinton. 2012. Imagenet classi�ca-
tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

[25] M Pawan Kumar, Benjamin Packer, and Daphne Koller. 2010. Self-paced learning
for latent variable models. In NIPS.

[26] M Pawan Kumar, Haithem Turki, Dan Preston, and Daphne Koller. 2011. Learning
speci�c-class segmentation from diverse data. In ICCV.

[27] Li-Jia Li and Li Fei-Fei. 2010. Optimol: automatic online picture collection via
incremental model learning. International journal of computer vision 88, 2 (2010),
147–168.

[28] Junwei Liang, Lu Jiang, Deyu Meng, and Alexander Hauptmann. 2016. Learning
to Detect Concepts from Webly-Labeled Video Data. In IJCAI.

[29] Junwei Liang, Qin Jin, Xixi He, Gang Yang, Jieping Xu, and Xirong Li. 2014.
Semantic Concept Annotation of Consumer Videos at Frame-Level Using Audio.
In Paci�c Rim Conference on Multimedia. Springer, 113–122.

[30] Xiaodan Liang, Si Liu, Yunchao Wei, Luoqi Liu, Liang Lin, and Shuicheng Yan.
2015. Towards computational baby learning: A weakly-supervised approach for
object detection. In ICCV.

[31] Christopher D Manning, Prabhakar Raghavan, and others. Introduction to infor-
mation retrieval. Vol. 1.

[32] Michael McCandless, Erik Hatcher, and Otis Gospodnetic. 2010. Lucene in Action:
Covers Apache Lucene 3.0. Manning Publications Co.

[33] Deyu Meng and Qian Zhao. 2015. What Objective Does Self-paced Learning
Indeed Optimize? arXiv preprint arXiv:1511.06049 (2015).

[34] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Je� Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems. 3111–3119.

[35] T Mitchell, W Cohen, E Hruschka, P Talukdar, J Be�eridge, A Carlson, B Dalvi,
M Gardner, B Kisiel, J Krishnamurthy, and others. 2015. Never-Ending Learning.
In AAAI.

[36] Paul Over, Jon Fiscus, Greg Sanders, David Joy, Martial Michel, George Awad,
Alan Smeaton, Wessel Kraaij, and Georges �énot. 2014. Trecvid 2014–an
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