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ABSTRACT 

 
Speaker adaptive training (SAT) is a well studied technique 
for Gaussian mixture acoustic models (GMMs). Recently 
we proposed to perform SAT for deep neural networks 
(DNNs), with speaker i-vectors applied in feature learning. 
The resulting SAT-DNN models significantly outperform 
DNNs on word error rates (WERs). In this paper, we present 
different methods to further improve and extend SAT-DNN. 
First, we conduct detailed analysis to investigate i-vector 
extractor training and flexible feature fusion. Second, the 
SAT-DNN approach is extended to improve tasks including 
bottleneck feature (BNF) generation, convolutional neural 
network (CNN) acoustic modeling and multilingual DNN-
based feature extraction. Third, for transcribing multimedia 
data, we enrich the i-vector representation with global 
speaker attributes (age, gender, etc.) obtained automatically 
from video signals. On a collection of instructional videos, 
incorporation of the additional visual features is observed to 
boost the recognition accuracy of SAT-DNN.   
 

Index Terms— Deep neural networks, speaker adaptive 
training, speech recognition 
 

1. INTRODUCTION 
 
DNNs have been applied widely to automatic speech 
recognition (ASR), showing superior performance over the 
traditional GMM-HMM models [1, 2]. Like GMM models, 
DNNs also face the challenge of potential mismatch 
between training and testing conditions. Various methods 
have been proposed for speaker adaptation of DNN models. 
Examples of the solutions include augmenting the speaker-
independent DNN with additional layers [3, 4], adapting the 
activation function [6] and using speaker-adapted feature 
space [2, 7, 8]. To further resolve this issue, our recent study 
[9] ported the concept of SAT to DNNs. Training of SAT-
DNN models starts from an initial DNN which has been 
trained over all the speakers. Then, a smaller neural network, 
referred to as iVecNN, is learned to convert speaker i-vectors 
[10] into linear feature shifts. These shifts are added to the 
original DNN inputs and the resulting feature space 
becomes more speaker-normalized. Finally, we update the 
initial DNN in the new feature space, which generates the 
canonical DNN model. On hybrid systems, SAT-DNN 
models have shown significant WER improvement over 
DNNs [9], regardless of whether the inputs are speaker-

independent (e.g., filterbank) or speaker-adapted (fMLLR) 
features. The goal of this paper is to analyze appropriate 
settings for the SAT-DNN architecture and explore possible 
improvements to it.  

First of all, we examine two critical variations in the 
configuration of SAT-DNN. The first variation lies in the 
training of i-vector extractors [10], and we study the impact 
of i-vector training data on the performance of SAT-DNN. 
Also, in the existing SAT-DNN, feature shifts from the 
iVecNN network are fused with the original DNN inputs via 
a simple sum operation. For more flexible feature fusion, we 
explore two other fusion functions: the product and the 
more complicated weighted sum.  

Second, hybrid systems have been shown to benefit from 
the SAT-DNN approach [9]. Apart from hybrid systems, 
popular applications of deep learning also include BNF 
generation [11] and CNN-based acoustic modeling [12, 13]. 
We investigate the utility of the SAT idea in improving both 
tasks. The introduced SAT-BNF and SAT-CNN models are 
found to perform better than their baselines relatively by 4-
8%. Moreover, DNNs trained with multilingual data have 
served successfully as deep feature extractors on a new 
language [14]. For more invariant feature representations, 
we extend SAT-DNN to the learning of multilingual feature 
extractors and develop two strategies to train iVecNN over 
multiple languages. Cross-language experiments show that 
on the new language, feature extractors trained with SAT-
DNN achieve better WERs than DNN-based extractors.  

Third, we investigate enrichment of i-vectors with visual 
features when transcribing video data. Specifically, speaker 
attributes (age, gender and race) are extracted from video 
frames which show the images of the speakers. These 
attributes, related with acoustic characteristics, are then 
appended to i-vectors as additional descriptors. Experiments 
show that incorporating the additional visual features brings 
modest improvement to SAT-DNN models. This way of 
leveraging visual features is applicable in real-world 
scenarios because it requires global visual features at the 
video level. In comparison, previous work [15, 16, 17] on 
audio-visual ASR relies on frame-level lip/mouth features 
which can be accessed only in highly constrained conditions.  
 

2. REVIEW OF SAT-DNN 
 
The architecture of the SAT-DNN model [9] is illustrated in 
Figure 1. The starting point of SAT-DNN is an initial DNN 
which  has  been  fully  trained  for  hybrid  system  building.  



 
Figure 1. The SAT-DNN model. Green circles depict the 
connection parameters for the iVecNN network. 
 
Training of SAT-DNN consists of two major steps. First, 
with the initial DNN fixed, we learn the smaller network 
iVecNN (on the left of Figure 1) whose inputs are i-vectors. 
Originating from speaker identification [10], i-vectors 
represent compactly the acoustic characteristics of speakers 
and have been exploited in ASR for speaker adaptation [8, 
18]. The outputs of iVecNN are linear feature shifts which 
can be formulated as: 
 

( )t t sf= +a o i                                (1) 
 

where is denotes the i-vector for speaker s, ot is an original 
feature vector from speaker s,  f denotes iVecNN which 
maps the i-vector into a feature shift. After adding this shift 
to ot, we get a speaker normalized feature vector at. In the 
second step, we fix the trained iVecNN and update the 
parameters of the initial DNN in the new feature space at. 
This finally generates the canonical DNN more independent 
of specific speakers. Training of iVecNN and updating of 
the DNN can be done via the standard error back-
propagation (BP) algorithm.  

During decoding, we extract i-vectors for testing speakers 
and feed the i-vectors to the architecture in Figure 1. This 
will adapt the SAT-DNN model to each testing speaker 
without any DNN fine-tuning on the adaptation data. Also, 
since i-vector extraction is totally unsupervised, no initial 
decoding pass is needed prior to adaptation. Therefore, 
SAT-DNN enables us to perform unsupervised adaptation in 
a very efficient manner.  
 

3. ANALYSIS AND EXTENSIONS OF SAT-DNN 
 
This section explores the behaviors of SAT-DNN with 
respect to variations in its configuration. With the same 
experimental setup, we also present two extensions to it.  
 
3.1. Experimental Setup and Baseline Results 
 
Our experiments inherit the setup used in [9]. We select 
100k utterances from the Switchboard-1 pack and create a 
training set with 110 hours of conversational telephone 
speech. The testing set is the Switchboard part of Hub5’00 
and contains 20 conversations. Decoding uses a trigram 
language model trained from the entire Switchboard-1 
transcripts. A GMM-HMM system is built with the standard 
Kaldi recipe [19]. This gives us the SAT-GMM model 
which has 4287 context-dependent triphone states.  

Table 1. WERs(%) of baseline DNN and SAT-DNN with the two 
feature types. 

Models filterbanks fMLLRs 
DNN 21.7 19.2 

SAT-DNN 19.3 17.9 
 

 
DNN models are constructed with the Kaldi+PDNN 

framework1 [20]. We first build a DNN model on speaker-
independent features, i.e., 11 neighboring frames of 40-
dimensional log-scale filterbank coefficients. The second 
DNN is built on 11 frames of speaker-adapted fMLLR 
features. On both feature types, the class labels for speech 
frames are generated by the SAT-GMM model through 
forced alignment. DNN fine-tuning optimizes the cross-
entropy objective with mini-batch based stochastic gradient 
descent (SGD) and using the Newbob learning rate schedule.  

For SAT-DNN, the iVecNN network contains 3 hidden 
layers each of which has 512 units. The output layer of 
iVecNN has the same dimension as the original features 
(440 for the two feature types) and uses the linear activation 
function. The other layers in iVecNN adopt the sigmoid 
activation function. Table 1 shows the results of DNN and 
SAT-DNN on the Hub5’00-SWB testing set. The i-vector 
extractor is trained on the entire 318 hours of Switchboard-1 
speech. A 100-dimensional i-vector is generated for each 
training and testing speaker. 

Note that WERs of both DNN and SAT-DNN in Table 1 
differ from the numbers reported in [9]. This is because the 
DNN in Table 1 has 6 hidden layers and is pre-trained with 
Stacked Denoising Autoencoders (SDAs) [21], while the 
DNN in [9] has 5 layers and is randomly initialized. For 
SAT-DNN, besides the differences in initial DNNs, this 
study turns to Kaldi’s in-built i-vector extractor, while [9] 
uses the external open-source ALIZE toolkit [22]. Due to 
these factors, we are getting better WERs than [9] and 
comparable numbers to [7], which means that we are 
working with a strong baseline. The results of the baseline 
DNN and SAT-DNN, as well the BNF and CNN models, 
can be replicated with our publicly released Kaldi+PDNN.  
 
3.2. Analysis about SAT-DNN Configuration 
 
Our first investigation focuses on improvement to i-vector 
extraction. Training of i-vector extractors uses no transcripts 
and is unsupervised in nature. Therefore, the training data 
can be enlarged easily by pooling more untranscribed 
speech. We add 2000 hours of Fisher telephone speech into 
the training set, while keeping all the other i-vector 
configuration (e.g., the i-vector dimension, the number of 
Gaussians in UBM) unchanged. From Table 2, we can see 
that no gains are obtained from augmenting the data for i-
vector extractor training. When DNN inputs are fMLLRs, 
we also attempt to train the  i-vector  extractor over  fMLLR  
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Table 2. WERs(%) of SAT-DNN with filterbank features when 
different sets of training data are used for i-vector extractors. 

I-Vector Training Data WER% 
Switchboard-1 19.3 

Fisher + Switchboard-1 19.3 
 
features instead of the raw MFCCs. In this case, SAT-DNN 
gives the WER of 17.8%, which is only 0.1% absolute 
improvement over the baseline (17.9%). In general, the 
SAT-DNN method performs robustly to the training of i-
vector extractors. 

Second, the existing SAT-DNN fuses the feature shifts 
and DNN inputs via a sum operation. A natural alternative 
is the product function. That is, the iVecNN outputs and the 
original inputs are multiplied in an element-wise fashion. 
Then, iVecNN is learned to generate feature weights rather 
than feature shifts. Another more complicated function is 
weighted sum which can be formally written as   
 

( )t t sf⊗ ⊗= + +m n ba o i                  (2) 
 

where the vectors m and n contain weights for the original 
features and linear shifts respectively, b is a bias vector, and 
⊗  represents element-wise product. We do not define the 
values of m, n and b in advance. Instead, these three vectors 
are learned together with iVecNN through BP. Table 3 
shows the performance of these two functions when SAT-
DNN takes filterbanks as inputs. We observe that weighted 

sum gives slight improvement due to more flexibility in 
feature fusion, while product deteriorates the WER.  
 
3.3. SAT for Bottleneck Feature Extraction 
 
BNF features can be extracted from a narrow bottleneck 
hidden layer in DNNs and used to construct GMM-HMM 
tandem systems. In this subsection, we improve the quality 
of the BNF front-end by applying the SAT-DNN approach. 
The initial DNN is a Deep BNF (DBNF) network described 
in [11, 23]. It has 6 hidden layers, in which the 5-th layer is 
a bottleneck with only 42 units. When the DBNF network, 
either a DNN or SAT-DNN, has been trained, we build a 
LDA+MLLT tandem system with the BNF features. 
Specifically, 9 consecutive BNF frames are spliced and then 
projected down to 40 dimensions with LDA. On top of the 
LDA+MLLT system, discriminative training is further 
performed with the boosted maximum mutual information 
(BMMI) objective [24].  

Table 4 compares the BMMI models when different 
architectures are employed for BNF generation. Again, the 
DBNF network can take the speaker-independent filterbanks 
 

Table 3. WERs(%) of SAT-DNN with fusion function variants. 

Fusion Function WER% 
product 19.5 

weighted sum 19.1 

Table 4. WERs(%) of BMMI tandem systems. 

Front-end filterbanks fMLLRs 
DBNF with DNN 19.6 18.0 

DBNF with SAT-DNN 18.0 17.5 
 
and the speaker-adapted fMLLRs as inputs. In each case, we 
can see that application of the SAT technique results in 
superior bottleneck features and improves the recognition 
performance of the BMMI tandem systems.  
 
3.4. SAT for Convolutional Neural Networks  
 
Deep convolutional neural networks (CNNs) have been 
exploited as an alternative to DNNs for acoustic modeling 
[12, 13]. Instead of using fully-connected parameter 
matrices, CNNs are characterized by parameter sharing and 
local feature filtering. The local filters help to capture 
locality along the frequency bands. On the convolution layer, 
a max-pooling layer is added for feature normalization and 
dimension reduction. CNNs reduce spectral variation in the 
speech signal, and have been experimentally confirmed to 
generate better WERs compared to DNNs.  

Our CNN architecture follows [26], consisting of 2 
convolution stages and 4 fully-connected layers. A key 
difference is that we are now applying 2-dimensional 
convolution over both time and frequency, while [26] uses 
convolution only on the frequency axis. The CNN inputs are 
29 neighboring frames each of which has 29-dimensional 
log-scale filterbanks. The first convolution layer filters the 
image-like 29x29 inputs using 64 kernels with the size of 
4x4x1. The second convolution layer takes as inputs the 
outputs from the first convolution stage and filters them 
with 64 kernels of 4x4x64. Every convolution layer is 
followed by a max-pooling layer with the pooling size of 
2x2. The convolution operation has the stride of 1 and the 
max-pooling operation is non-overlapping. Each of the 4 
fully-connected layers contains 1024 hidden units and uses 
the sigmoid activation function.  

Motivated by SAT-DNN, implementation of SAT for 
CNNs is straightforward to accomplish. After getting the 
initial CNN, we learn the iVecNN network which has the 
output dimension of 29x29. Then, the CNN model is 
updated in the newly-estimated feature space (Equation 1). 
Apart from SI filterbanks, we also turn to speaker-adapted 
filterbanks with VTLN for complete evaluations. From 
Table 5, we can see that the improvement of SAT-CNN 
over CNN becomes less significant in comparison to the 
improvement of SAT-DNN over DNN. This is because in 
general, CNNs normalize the speech features more 
effectively than DNNs, which decreases the efficacy of SAT. 
 

Table 5. WERs(%) of CNN and SAT-CNN with two feature types. 

Models filterbanks VTLN-filterbanks
CNN 19.9 19.0 
SAT-CNN 19.2 18.6 



Also, since speaker variability has been partly modeled by 
VTLN transforms, SAT-CNN achieves marginal gains over 
the CNN baseline when the inputs are VTLN-filterbanks.  
 

4. SAT-LUFE FOR LANGUAGE UNIVERSAL 
FEATURE EXTRACTION 

 
This section introduces SAT of multilingual DNNs in order 
for more effective language-universal feature extraction 
(LUFE) [14, 25, 26, 27]. LUFE aims to generate high-level, 
language-independent feature representations from DNNs 
which have been trained collectively over a group of 
languages. The hidden layers of the multilingual DNN are 
shared across all the languages, while each language has its 
own output layer, speech data and class labels. Fine-tuning 
is carried out using the standard SGD with one critical 
difference: each epoch traverses data from all the source 
languages instead of a single language. Parameters of the 
shared layers are updated with gradients accumulated from 
multiple languages. Interested readers can refer to [14, 26] 
for more details regarding multilingual DNN training.  
    After the multilingual DNN is trained, the shared hidden 
layers act as a deep feature extractor.  Given a new language, 
DNN hybrid models can be built using features generated 
from this extractor, instead of the raw acoustic features (e.g., 
MFCCs). Cross-language acoustic modeling in this fashion 
enables knowledge transfer across languages and thus 
improves ASR on the new language, especially when the 
new language has limited transcribed speech.  
 
4.1. LUFE with Speaker Adaptive Training 
 
The key to the success of SAT-DNN is the learning of the 
speaker-normalized feature space with iVecNN and i-
vectors. This motivates us to combine SAT and LUFE, 
which potentially enhances the feature representations. We 
perform SAT for the multilingual DNN after the feature 
extractor has been fully trained as described by [26]. 
Similarly, the iVecNN network is learned to convert i-
vectors into linear feature shifts. Then parameters of the 
multilingual DNN are updated on the new features with 
iVecNN applied. We propose two strategies to train iVecNN 
over multiple languages. The iVecNN network can be 
shared by all the source languages and trained in the same 
manner as the multilingual DNN. Alternatively, each source 
language can have its iVecNN separately. These two 
methods are referred to as Share and Unshare respectively.  

When switching to the new language, we input the i-
vectors, together with the speech features, to the SAT 
architecture which generates feature representations from 
the highest layer. If the iVecNN network has been trained 
with Share, then this iVecNN can be ported to the new 
language directly. Otherwise, we have to retrain the iVecNN 
network on the new language from scratch. More 
comparison between Share and Unshare will be conducted 
in Section 4.2.  

4.2. Experiments and Analysis 
 
The quality of the feature extractors is evaluated on a cross-
language acoustic modeling task. Our experiments use the 
multilingual corpus collected under the BABEL program 
[11, 23, 26, 27]. This corpus covers a wide range of 
languages including Cantonese, Tagalog, Pashto, etc. Each 
language contains around 80 hours of conversational 
telephone speech for training and 10 hours for decoding. 
Additionally, there is also a low-resource 10-hour condition 
under which only 10 hours of transcribed speech are 
allowed to be used for system building. We take Tagalog 
(IARPA-babel106-v0.2f) as the new language. The source 
languages include the 80-hour sets of Cantonese (IARPA-
babel101-v0.4c), Turkish (IARPA-babel105b-v0.4) and 
Pashto (IARPA-babel104b-v0.4aY).  

On the new language, hybrid systems are built with the 
outputs from the feature extractors. We select 2 hours of 
speech from the 10-hour decoding data as the testing set. It 
is worth noting that i-vector extraction is always performed 
within each language. We are not training a joint i-vector 
extractor over all the multilingual speech. Table 6 presents 
WERs of the new-language hybrid systems under the 80-
hour and 10-hour conditions. No-LUFE denotes the purely 
monolingual case without using any feature extractors.  

In comparison to No-LUFE, applying LUFE brings 
significant gains especially under the 10-hour condition.  
SAT-LUFE, which uses the SAT-trained feature extractor, 
outperforms the normal LUFE consistently. Comparing the 
two iVecNN training strategies reveals that Share performs 
better than Unshare under the 10-hour condition. We think 
the reason is that Unshare requires re-estimation of iVecNN 
on the new language. This re-estimation may not be reliable 
under limited training data (10 hours). When the training 
data are increased to 80 hours, the iVecNN network can be 
trained more robustly with Unshare. At the same time, the 
iVecNN re-estimation helps to adapt the feature extractor to 
the new language. That is why we observe slightly better 
WERs achieved by Unshare under the 80-hour condition.  

 
5. ENRICHING I-VECTORS WITH VISUAL 

FEATURES 
 
Transcribing multimedia data has become an active research 
area in ASR [28, 29]. In addition to the audio track, the 
video signal provides rich information which can potentially 
benefit ASR. Previous work [15, 16, 17] has successfully  
combined audio and  supplemental  visual features  (e.g.,  lip  
 

Table 6. Results of feature extractors under both new-language 
conditions. WERs (%) are reported on the 2-hour testing set.  

 

Feature Extractor 80-hour 10-hour 
No-LUFE 49.3 65.8 

LUFE 46.7 59.6 
SAT-LUFE  iVecNN-Share 46.1 57.8 

SAT-LUFE  iVecNN-Unshare 45.7 58.3 



contours, mouth shapes, facial expressions, etc.) to improve 
ASR. However, the applicability of these proposals is 
limited by the availability of frame-level visual features 
which are usually not obtainable from open-domain data 
(e.g., YouTube videos). Also, since the video and audio 
have different sampling rates, aligning frames from these 
two streams poses another challenge.  

In contrast, some video-level features can be easily 
extracted even from real-world videos, which to some extent 
globally characterize the acoustic conditions. Examples of 
these features are scenes (office, street, etc.) of the 
conversations and attributes (age, gender, race, etc.) of the 
speakers. This section studies the utility of SAT-DNN 
acting as a flexible framework for incorporating global 
visual features. Although we only deal with speaker 
attributes in this work, SAT-DNN is capable of using other 
feature types, ranging from segment-level actions/concepts 
to video-level scene/event attributes.  
 
5.1. Dataset 
 
We download a collection of around 4k English videos from 
online archives such as Youku.com, Tudou.com, 
YouTube.com and CreativeCommons.org. These videos are 
intended for expertise sharing on specific tasks (e.g., oil 
change and sandwich making), and have an average 
duration of 90 seconds. For each video, the raw closed 
captions are available. We take several steps to convert the 
collected data in an applicable ASR training corpus. These 
steps include cleaning and normalizing transcripts, down-
sampling the audio track, and adding new words into the 
dictionary. Time markers for each utterance are obtained via 
forced alignment with the raw closed captions and our 
existing broadcast news recognizer. This finally gives us 94 
hours of speech data, out of which 90 hours are selected for 
training and 4 hours for testing.  
 
5.2. Visual Feature Extraction 
 
In this paper, we focus on speaker attributes that can be 
deduced automatically from the videos. We observe that in 
each of these instructional videos, the (principal) speaker 
tends to appear at the beginning for a brief introduction. 
Based on this observation, we extract only the frame at the 
position which is immediately after the first utterance starts. 
Then, this image, which is assumed to show the speaker, is 
submitted to the Face++ API2 that returns 3 attributes: age, 
gender and race. The value of age is continuous, while 
gender and race have categorical values. We categorize the 
age value into 6 bins: < 20, 20-30, 30-40, 40-50, 50-60, >60. 
These bins are represented by a 6-dimensional vector. Each 
of the 6 elements is a binary variable indicating whether the 
speaker’s age falls into the corresponding bin. The gender 
classification result is converted into a 2-dimensional vector 

                                                 
2 www.faceplusplus.com 

whose binary elements denote male and female respectively. 
Similarly, a 3-dimensional vector is employed to represent 
the 3 possible values of race: White, Black and Asian. The 
final attribute vector is assembled by concatenating these 
three sub-vectors. For example, the attribute vector for a 58-
year-old, male and white speaker is [0 0 0 0 1 0 | 1 0 | 1 0 0]. 
For some videos, no speaker attributes can be generated due 
to image resolution, illumination condition or timing of the 
speakers’ show-ups. In this case, we set the elements in each 
of the sub-vectors uniformly, e.g., [0.5, 0.5] for gender and 
[0.33 0.33 0.33] for race.  
 
5.3. Method and Results 
 
With the training corpus, GMM, DNN and SAT-DNN 
acoustic models are constructed by following the procedures 
described in Section 3. We only experiment with filterbank 
features as DNN and SAT-DNN inputs. Training data for 
the i-vector extractor consist of the defined 90-hour training 
set, as well as the additional 400 hours of videos collected 
from the same sources. Our first set of experiments are with 
the DNN model. We append the 11-dimensional attribute 
vector to the filterbank features on each speech frame. Table 
7 shows 0.5% absolute WER improvement (22.2% vs. 
22.7%) achieved by adding the attributes. This verifies that 
these speaker attributes are helpful for acoustic modeling. 
When switching to SAT-DNN, we append the speaker 
attributes to the speaker i-vectors rather than to speech 
frames. Training of SAT-DNN with the enriched i-vectors 
follows the same protocol as adopted by the baseline SAT-
DNN. The only difference is that the i-vector dimension is 
enlarged from 100 to 111. We can see from Table 7 that the 
incorporation of the speaker attributes reduces the WER of 
SAT-DNN by 0.4% absolutely (21.0% vs. 21.4%).  
 

6. CONCLUSIONS AND FUTURE WORK 
 
This paper has studied improvements and extensions to the 
SAT-DNN approach from the following aspects. First, we 
analyze the impact of i-vector extractor training and 
alternative feature fusion. Second, SAT-DNN is applied to 
various tasks including BNF generation, CNN acoustic 
modeling and multilingual DNN feature extraction. Last, 
when transcribing multimedia data, we explore the enrich-
ment of i-vectors with additional visual features. For our 
future work, we are interested to further study the portability 
of the iVecNN network across domains and languages. Also, 
we would like to improve SAT-DNN by enriching i-vectors 
with more visual features such as scene and action 
classification results.  
 

Table 7. DNN and SAT-DNN without and with the speaker 
attributes. WERs (%) are reported on the 4-hour testing set. 

 

Model DNN SAT-DNN
Baseline 22.7 21.4 

+ Speaker Attributes 22.2 21.0 
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