
Efficient Deep Web Crawling Using Reinforcement

Learning

Lu Jiang, Zhaohui Wu, Qian Feng, Jun Liu, Qinghua Zheng

 MOE KLINNS Lab and SKLMS Lab, Xi’an Jiaotong University

No.28, Xianning West Road, Xi'an 710049, P.R.China
roadjiang@yahoo.com, wzh@stu.xjtu.edu.cn, qfeng@stu.xjtu.edu.cn,

liukeen@mail.xjtu.edu.cn, qhzheng@mail.xjtu.edu.cn

Abstract. Deep web refers to the hidden part of the Web that remains
unavailable for standard Web crawlers. To obtain content of Deep Web is
challenging and has been acknowledged as a significant gap in the coverage of

search engines. To this end, the paper proposes a novel deep web crawling
framework based on reinforcement learning, in which the crawler is regarded as
an agent and deep web database as the environment. The agent perceives its
current state and selects an action (query) to submit to the environment
according to Q-value. The framework not only enables crawlers to learn a
promising crawling strategy from its own experience, but also allows for
utilizing diverse features of query keywords. Experimental results show that the
method outperforms the state of art methods in terms of crawling capability and
breaks through the assumption of full-text search implied by existing methods.

Keywords: Hidden Web, Deep Web Crawling, Reinforcement Learning.

1 Introduction

Deep web or hidden web refers to World Wide Web content that is not part of the
surface Web, which is directly indexed by search engines. Studies [1] show deep web

content is particularly important. Not only its size is estimated as hundreds of times

larger than the so-called surface Web, but also it provides users with high quality

information. However, to obtain such content of deep web is challenging and has been

acknowledged as a significant gap in the coverage of search engines [2]. Surfacing is

a common solution to provide users deep web content search service1, in which the

crawler pre-computes the submissions for deep web forms and exhaustively indexes

the response results off-line as other static HTML pages. The approach enables
leveraging the existing search engine infrastructure hence adopted by most of

crawlers, such as HiWE (Hidden Web Exposer) [3], Hidden Web crawler [4] and

Google’s Deep Web crawler [2].

One critical challenge in surfacing approach is how a crawler can automatically

generate promising queries so that it can carry out efficient surfacing. The challenge

1 We may use crawl and surface interchangeably in the rest of the paper.

mailto:roadjiang@yahoo.com
mailto:wzh@stu.xjtu.edu.cn

has been studied by several researches such as [2], [4], [5], [6], [7]. In these methods,

candidate query keywords are generated from the obtained records, and then their

harvest rates, i.e. the promise to obtain new records, are calculated according to their

local statistics, such as DF (Document Frequency) and TF (Term Frequency). The one

with the maximum expected harvest rate will be selected for the next query. Their

basic idea is similar while the difference is that they choose different strategies to
derive the estimated harvest rate of each query candidate.

However, to the best of our knowledge, existing methods suffer from the following

three deficiencies. Firstly, the future reward of each query is ignored, which is also

known as “myopia problem” [8]. The next query is selected according to the harvest

rate defined as the immediate reward at current step. This inherent deficiency makes

the existing methods fail to look ahead to future steps thus cannot make a decision of

long-term interest. Secondly, the existing methods solely utilize the statistic of

acquired data records while ignoring the experience gained from previous queries,
which usually results in reducing the efficiency of crawling. For example when a

crawler issues an unpromising keyword which brings few or even no response records,

as the acquired data record hardly accumulates, the statistic of the data will remain the

same. Therefore, it is likely that the crawler will make the same mistakes in its future

decisions. Finally, existing methods relied on a critical assumption that full-text

search are provided by deep web databases, in which all of the words in every

document are indexed. However, this assumption is too strong to hold in the cases of

databases providing non full-text search interfaces, in which some words appearing
on the pages e.g. noisy words and template words are excluded from the index. The

disagreement leads to that the existing estimation techniques for full-text databases,

e.g. Zipf’ Law [4], [9] can hardly be applied to non full-text databases. E.g. Fig. 1

illustrates the keywords distribution on AbeBooks (www.abebooks.com), in which x-

axis represents document frequency ranks of keywords in the data corpus and y-axis

denotes the percent of response records brought by the keywords. As one can see, the

Zipf curve fails to simulate the distribution of keyword response.

Fig. 1 Keywords distribution on AbeBooks

In this paper, we present a formal framework based on the RL (Reinforcement

Learning) [10] for deep web crawling. In the framework, a crawler is regarded as an

agent and deep web database as the environment. The agent perceives its current state

and selects an action (query) to submit to the environment according to long-term

reward. The environment responds by giving the agent some reward (new records)

and changing it into the next state. Each action is encoded as a tuple using its

linguistic, statistic and HTML features. The rewards of unexecuted actions are

evaluated by their executed neighbors. Because of the learning policy, a crawler can

avoid using unpromising queries, as long as some of them have been issued. The

experimental results on 5 real world deep web sites show that the reinforcement

learning crawling method relaxes the assumption of full-text search and outperforms
existing methods. To sum up, the main contributions of our work are:

1) We introduce a formal framework for the deep web surfacing problem. To the

best of our knowledge, ours is the first work that introduces machine learning

approaches to the deep web surfacing problem.

2) We formalize the problem in the framework and propose an efficient and

applicable surfacing algorithm working well on both full-text and non full-

text databases.

3) We develop a Q-value approximation algorithm allows for a crawler selecting
a query according to the long-term reward, which overcomes the myopia

problem to some extent.

The rest of this paper is organized as follows: Section 2 gives a brief introduction

of related work. Section 3 presents the formal reinforcement learning framework.

Section 4 discusses the crawling algorithm and key issues in it. The experimental

results are discussed in Section 5 whereas conclusions and future work are presented

in the final section.

2 Related Work

The state-of-the-art deep web crawling approaches generate new keywords by

analyzing statistic of current acquired records returned from previous queries.
Barbosa L. et al. first introduced the ideas, and presented a query selection method

which generated the next query using the most frequent keywords in the acquired

records [5]. However, queries with the most frequent keywords in hand do not ensure

that more new records are returned from the deep web database. Ntoulas A. et al.

proposed a greedy query selection method based on the expected harvest rate [4]. In

the method, the one with the maximum expected harvest rate will be selected for the

next query. Ping W. et al. modeled each web database as a distinct attribute-value

graph and a greedy link-based query selection method was proposed to approximate
the optimal solution [8]. Lu J. et al. resolved the problem using set-covering sampling

method [7]. Liu J. et al. extended the Ntoulas’s method to entire form by introducing

a novel concept MEP (Minimum Executable Pattern). In the method, a MEP set is

build and then promising keywords are selected by joint harvest rate of a keyword and

its pattern. By selecting among multiple MEPs, the crawler achieves better results [6].

Jayant M. et al. improved the keyword selection algorithm by ranking keywords by

their TFIDF (Term Frequency Inverse Document Frequency) [2]. Jiang L. et al.

present a method to evaluate a keyword by its HTML features besides TF and DF
using supervised learning [11].

3 Reinforcement Learning Framework

In this section, we propose a formal framework for the deep web crawling based on

RL and formalize the crawling problem under the framework. First of all we give an

overview of the RL framework.

Fig. 2 Overview of the reinforcement learning framework

The relation between a crawler and a deep web database is illustrated in Fig. 2.
From the figure, one can conclude that at any given step, an agent (crawler) perceives

its state and selects an action (query). The environment responds by giving the agent

some (possibly zero) reward (new records) and changing the agent into the successor

state. More formally we have

Definition 1. Suppose and are two sets of states and actions respectively. A

state represents the acquired portion of the deep web database records at the

step . An action (for short) denotes a query to the deep web database

with the keyword , which causes a transition from state to some successor state

 with the probability .

Definition 2. The process of deep web crawling is defined as a discrete Decision

Process consisting of a set of states , a set of actions and transition

probabilities distribution . A crawling process follows a specific issue policy

, which is a mapping from the set of states to the set of actions.

In the paper, we assume that the decision process is a deterministic process i.e.

is subjected to a uniform distribution. During the process, after execution of an action

the agent is responded by giving a collection of data records by the environment. The

response record can be defined as:

Definition 3. Suppose is the collection of all data records residing in deep web

database. After execution of action at state , the response record set

represents the collection of data records responded by the environment. Likewise the

portion of the new records in the response record set retrieved by action at state

is denoted as ().

Suppose a crawling process follows an issue policy , the portion of new records in

the response records of action at state can be formulated as

 (1)

Note that the response record set of an action is irrelevant to the state hence ,
.

There are two important functions in the process. Transition function

 denotes the successor state of the given state and action. Reward

function is the reward received at the transition from state to state by

executing action , i.e. the portion of new records brought by executing , computed

from equation

 (2)

Though in some cases is either unknown or cannot be obtained beforehand, the

absence of the value does not influence the calculation of the reward as they are

relative values to rank actions in the same baseline.

The transition of actions causes a cost. In the paper, the cost is measured in terms

of time consumed, i.e. . is the cost of issuing an

action and is proportional to the average time of handling a response record.

The expectation conditioned on the current state and the policy is called

state-value function of state , computed from

 (3)

in which is referred as the step length and is the discount factor. Among all

polices, there must exist an optimal policy, noted defined as

(,). To simplify notations, we write .
Based on the presentations above, the formal definition of deep web crawling

problem can be defined as:

Problem. Under the constraint , find such policy

 that maximizes the accumulative reward value. Here

is the maximum cost constraint.

4 Algorithm

In this section we discuss how to resolve the deep web crawling problem defined in

Section 3. There are two crucial factors in solving the problem i.e. the reward of each

action r and the reward of an issue policy Q-value. Section 4.1 and 4.2 introduces the

methods for the action reward calculation and Q-value approximation respectively.

Finally an adaptive algorithm for surfacing deep web is presented in the end of

Section 4.2.

4.1 Reward calculation

Before specifying the method for the action reward calculation, we need the definition

of the document frequency.

Definition 4. Suppose on the current state and the issue policy , the document

frequency of action denoted by (for short) is

the number of documents containing keyword in acquired record set

.

Note that the document frequency of each action is a known statistic. Since records

of having been retrieved at the step , the number of documents

containing keyword can be counted up in the acquired record set. Relying on Def.

4, the following theorem can be established.

Theorem 1. At state , the reward of each action in can be calculated from

. (4)

Proof: By incorporating Eq. (1) into Eq. (2) we have

. (5)

Eq. (5) can be further rewritten as

. (6)

The intersection part in Eq. (6) denotes the collection of documents containing the

keyword of action a in the data set . According to the Def. 4 the

value equals to the document frequency of the action, i.e.

 (7)

Consequently the Eq. (4) could be proved by incorporating Eq. (7) into Eq. (6).

The absence of in Eq. (4) does not affect the final result for the same reason

described in Section 3. According to Eq. (4) for an executed action, as response

record set is acquired, the reward can be calculated. In contrast, the reward

calculation for an unexecuted action directly through Eq. (4) is infeasible.

Nevertheless, the response record set of an unexecuted action can be estimated by

generalizing from those executed. Before proceeding any further, we define the action

training and candidate set.

Definition 5. Suppose at state , training set is a set of executed actions,

. Similarly, candidate set is a set of available action candidates for

submission in the current state. Each action in either or is encoded in the

same vector space.

Based on Def. 4, for an action in , its reward can be estimated as:

. (8)

in which is a kernel function used to evaluate the distance between the

given two actions. Since the response record set of an action is irrelevant to

the state , the response record set can be rewritten to the current state i.e.

. Accordingly, the intuition behind the Eq. (8) is to estimate the

reward for an action in by evaluating those in . As all response record sets of

executed action are at the current state, the size of response record set of an action in

 can be learnt from those sharing the similar features in . Once the size of

response record set of an unexecuted is calculated by Eq. (8), the value can then be

applied in Eq. (4) to calculate its reward.

Now the action rewards for both executed and unexecuted actions can be

calculated from Eq. (4). In the rest of the subsection, we will discuss how to calculate

kernel function in Eq. (8). Calculating the similarity of actions requires

encoding them in a feature space. We incorporate three types of features i.e. linguistic

features, statistical features and HTML features to establish the feature space [11].

Linguistic features consist of POS (Part of Speech), length and language of a

keyword (action). Length is the number of characters in the keyword. Language

represents the language that a keyword falls into. It takes effect in multilingual deep

web database.

Statistical features include TF (Term Frequency), DF (Document Frequency) and
RIDF (Residual Inverse Document Frequency) of a keyword in the acquired records.

The value of RIDF is computed as:

 (9)

RIDF tends to highlight technical terminology, names, and good keywords and to

exhibit nonrandom distributions over documents [12].

The HTML format usually plays an important role in indicating the semantics of
the presented data. This brings us to consider the HTML information of keywords.

We propose two HTML features tag-attribute and location. Tag-attribute feature

encodes HTML tag and attribute information of a keyword, and location represents

the depth of the keyword’s node in the DOM tree derived from the HTML document.

The features may imply the semantic information of a keyword hence is useful in

distinguishing unpromising keywords.

For linguistic and HTML features whose values are discrete, the liner kernel is

assigned. Considering that value of statistical feature tends to a Gaussian distribution
over documents, the Gaussian kernel is adopted to evaluate similarity upon the

statistical features, which is formulated as

. (10)

The final kernel function is hybrid of these kernels. Suppose , and

() are weights for linguistic, HTML and statistical kernel respectively,

the kernel function to evaluate similarity of two actions is

. (11)

In experiments the weight of statistical features usually accounts for a larger part.

4.2 Q-value approximation and Surfacing Algorithm

Once the reward of each action is obtained, given the problem definition in Section 3,

the agent can find an optimal policy if the of each state can be calculated.

The calculation of could be well solved when the agent uses Q-function [13], [14]:

. (12)

Here Q-function represents the reward received immediately upon executing

action from state , plus the value discounted by thereafter. Using Eq. (3), we

can rewrite Q-function as

. (13)

To simplify the notion, here we let i.e. the reward for the future steps are

regarded as important as those for the present. is a critical parameter denoting the

step length looking ahead to the future reward. If , the future reward is ignored

and Q-value equals to the immediate reward i.e. . When , Q-

value represents the long-term reward. However, as the action reward at state is

unavailable at state , the Q-value has to be approximated. To estimate the Q-value,

we make the following assumption: assume at the current state, the action set will

not enlarge in the next steps (). When is not very large the

assumption is reasonable. Under the assumptions, Theorem 2 could be established.

Theorem 2. At state when the Q-value of an action

(,) can be estimated as:

 (14)

Proof: To simplify the notion, let , ,

. First of all, because the action set will not enlarge, the optimal Q-

value can be searched in the action set at the current state. According to the Eq. (13),

when h =1 the Q-value can be formulated as

. (15)

Following the method described in Section 4.1, can be calculated; whereas

is unknown at state . Therefore rewrite the Eq. (15) as

. (16)

Because the response records are independent with each others, the capture-mark-

recapture [15] method can be applied to estimate the overlaps records:

. (17)

Further Eq. (17) can be transformed into

. (18)

By incorporating Eq. (18) into Eq. (16) we have

 (19)

Note that according to the characteristics of response record set in Def. 3 and Eq. (5):

. (20)

Following Eq. (5) and Eq. (20), Eq. (19) can be reformulated as

 (21)

Then the Theorem 2 can be derived by incorporating Eq. (7) into Eq. (21).

As all the factors in the Eq. (14) are either calculated or can be statistically

numerated, the Q-value of each action can be approximated based on the acquired

data set. Now, we can approximate Q-value with a given step length by iteratively

applying Eq. (14). Due to the lack of space, we cannot present the details here. Note if

h goes too big, the assumption may not hold and the future state may diverge from the

experienced state rendering the approximation for future reward imprecise.
We develop an adaptive algorithm for deep web surfacing based on the framework,

as shown in Algorithm 1. The algorithm takes the current state and last executed

action as input and outputs the next optimal action.

Algorithm 1: Adaptive RL surfacing algorithm

Input: , Output:

1: calculate the reward of action following Eq.(4);

2: for each document

3: for each keyword in do

4: if action then ;

5 else then update TF and DF of action ;

6: end for

7: end for

8: change the current state to ;

9: ; update candidate set ; ;

10: for each update its reward using Eq. (8) and Eq. (4);

11: for each calculate its Q-value using Eq. (14);

12: return ;

Specifically, the surfacing algorithm first calculates the reward of the last executed

action and then updates the action set through Step 2 to Step 7, which causes the agent

to transit from its state to the successor state . Then the training and candidate

set are updated in accord with the new action set in Step 9. After that the algorithm
estimates the reward and Q-value for each action in candidate set in Step 10 and Step

11 respectively. The action that maximizes Q-value will be returned as the next to be

executed action.

5 Experiments

To demonstrate the efficiency of our proposed approach for deep web crawling, we

execute our algorithm on five real world deep web databases with different scales and

domains. The detailed information about these databases is listed in Tab.1. In the case

of AbeBooks, as its large scale, the agent restricted to crawling the “historical

fictions” category to accelerate the experiment. Queries to the site are applied to the

textbox “keywords”. Regarding Wikicfp, Yahoo movie, which are the typical medium
Deep Web databases, we utilize the only generic search textboxes as their query

interfaces. As for Baidu Baike and Google Music, the sites are multilingual sites

consisting of both English and Chinese. On the sites we select the rewarding textbox

“Keyword Tag” and “Singer” as their query interfaces.

To compare our RL method with existing ones, we choose following three methods

as baseline methods: (Suppose at state , the agent is to evaluate an action)

 Random [4], [7], [8]: the reward of an action is assigned to a random float i.e.

.

 GF (Generic Frequency) [5], [7], [8]: the reward of an action is evaluated by

the generic DF of the action at current state, i.e. .

 Zipf [4], [6], [9]: The size of response record set of each action is estimated

by Zipf-Mandelbrot’s Law [16]: ,where , and

 are parameters and is the DF rank of the action.

All methods above (including RL) share the same candidate set generation policy

which selects the top 500 actions with highest RIDF. It is interesting to note that RL is

more general compared with the baseline methods. If future reward of an action is

ignored i.e. and the reward of an action is determined by a presumed

distribution, the RL degenerates to Zipf, i.e. . Further if the

acquired portion of an action is ignored too i.e. , the RL degenerates to

the GF, i.e. .

5.1 Effectiveness of RL method

Our interest is to discover their records as many as possible with affordable cost. To

make the results more intelligible, we roughly use harvest (Fourth column) i.e. the

number of actual retrieved records and number of queries (Sixth column) to evaluate

the crawling effects. Tab. 1 shows that our method is quite efficient. In the first four
cases the agent achieves more than 80% coverage by issuing around 500 hundred

queries.

Table 1. Experiment web sites and their experimental results.

DB Name URL Domain Harvest
Estimated
Database

#Queries

AbeBooks www.abebooks.com Book 90,224 110,000 322
Wikicfp www.wikicfp.com Conference 4,125 5,200 499

Yahoo movie movies.yahoo.com/mv/search Movie 126,710 128,000 367
Google music www.google.cn/music/ Music 85,378 110,000 592
Baidu Baike Baike.baidu.com Wikipedia 820,180 1,000,000 1,950

5.2 Performance Comparison with baseline method

We performed our method as well as the baseline methods on the experiment sites.

The experimental results are displayed in Fig. 3 in which the y-axis denotes the
database coverage, while the x-axis represents the query number (due to the lack of

space we only present some results here). In experiments step length was set to 1. As

can be seen, the result shows that RL method is more efficient than baseline methods

on the experiment websites. We analyzed the queries logs and summarized two

reasons accounting for excellence of RL method. Firstly because the RL method

selects a keyword according to the long-term rather than immediate reward, it is able

to acquire a better awareness of the environment leading to more accurate estimation

for succeeding rewards. As we found in experiments the rewarding keywords are
issued earlier in RL than other methods. Secondly the keywords issued in RL are

more relevant to the pattern selected, e.g. “keywords” on Baidu Baike. This suggests

that the agent using RL learns the experience from its previous queries and hence

sticks on the keywords matching against more records; whereas the agent using other

methods do not make any adjustment when the presumed assumption is not applied.

(a) Experiment on Baidu Baike (b) Experiment on Wikicfp

Fig. 3 Performance Comparisons with baseline methods

6 Conclusion and future work

In this paper we tackle the problem of deep web surfacing. The paper first presents a

formal reinforcement learning framework to study the problem and then introduce an

adaptive surfacing algorithm based on the framework and its related methods for

reward calculation and Q-value approximation. The framework enables a crawler to

learn an optimal crawling strategy from its experienced queries and allows for it
making decisions on long-term rewards. Experimental evaluation on 5 real deep web

sites suggests that the method is efficient and applicable. It excels the baseline method

and works well on both full-text and non full-text databases. In general, it retrieves

more than 80% of the total records by issuing a few hundreds of queries.

We are studying the issues of deep web crawling in practical and developing an

open source platform for Deep Web crawling: DWIM (Deep Web Intelligent Miner).

DWIM is the first open source software in the respect Deep Web crawling and

integrates many crawling policies and keywords selection criteria which can be used
as an experimental platform for researches and a crawler engine for developers.

Acknowledgement

The research was supported by the National High-Tech R&D Program of China under

Grant No.2008AA01Z131, the National Science Foundation of China under Grant

Nos.60825202, 60803079, 60633020, the National Key Technologies R&D Program

of China under Grant Nos.2008BAH26B02, 2009BAH51B00, the Open Project
Program of the Key Laboratory of Complex Systems and Intelligence Science,

Institute of Automation, Chinese Academy of Sciences under Grant No. 20080101,

Cheung Kong Scholar’s Program.

References

1. Lawrence, S., Giles, C.L.: Searching the World Wide Web. Science, pp. 280:98--100 (1998)
2. Madhavan, J., Ko, D., Kot, L., Ganapathy, V., Rasmussen, A., Halevy, A.: Google’s Deep-

Web Crawl. In Proceedings of VLDB2008. Auckland, New Zealand, pp. 1241--1252 (2008)
3. Raghavan, S., Garcia-Molina, H.: Crawling the Hidden Web. In Proceedings of VLDB2001.

Rome Italy, pp. 129--138 (2001)
4. Ntoulas, A., Zerfos, P., Cho, J.: Downloading Textual Hidden Web Content through

Keyword Queries. In Proceedings of JCDL2005. Denver, USA. pp. 100--109 (2005)
5. Barbosa, L., Freire, J.: Siphoning Hidden-Web Data through Keyword-Based Interfaces. In

Proceedings of SBBD2004, Brasilia, Brazil, pp. 309--321 (2004)
6. Liu, J., Wu, ZH., Jiang, L., Zheng, QH., Liu, X.: Crawling Deep Web Content Through

Query Forms. In Proceedings of WEBIST2009, Lisbon Portugal, pp. 634--642 (2009)
7. Lu, J., Wang, Y., Liang, J., Chen, J., Liu J.: An Approach to Deep Web Crawling by

Sampling. In Proceedings of IEEE/WIC/ACM Web Intelligence, Sydney, Australia, pp.
718--724 (2008)

8. Wu, P., Wen, JR., Liu, H., Ma, WY.: Query Selection Techniques for Efficient Crawling of

Structured Web Source. In Proceedings of ICDE2006, Atlanta GA, pp. 47--56 (2006)
9. Ipeirotis, P., Gravano, L.: Distributed search over the hidden web: Hierarchical database

sampling and selection. In VLDB2002, Hong Kong, China, pp.394--405 (2002)
10. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of

Artificial Intelligence Research, 4:237–285 (1996)
11. Jiang, L., Wu ZH., Zheng, QH., Liu, J.: Learning Deep Web Crawling with Diverse

Features. In Proceedings of IEEE/WIC/ACM Web Intelligence, Milan, Italy, pp. 572--575
(2009)

12. Yamamoto, M., Church, K.W.: Using suffix arrays to compute term frequency and
document frequency for all substrings in a corpus. Computational Linguistics, 27(1): pp. 1-
30 (2001)

13. Watkins, C.J., Dayan, P.: Q-learning. Machine Learning, 8:279-292 (1992)

14. Ratsaby, J.: Incremental Learning with Sample Queries, IEEE Trans. on PAMI, Vol. 20, No.
8, pp.883-888 (1998)

15. Amstrup, S.C., McDonald, T.L., Manly, B.F.J.: Handbook of capture–recapture analysis.
Princeton University Press (2005)

16. Mandelbrot, B.B.: Fractal Geometry of Nature. New York: W. H. Freeman and Company
(1988)

17. Sutton, R.C., Barto, A.G.: Reinforcement learning: An Introduction. The MIT Press,
Cambridge, MA (1998)

