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ABSTRACT

Semantic search in video is a novel and challenging problem
in information and multimedia retrieval. Existing solutions
are mainly limited to text matching, in which the query
words are matched against the textual metadata generat-
ed by users. This paper presents a state-of-the-art system
for event search without any textual metadata or example
videos. The system relies on substantial video content un-
derstanding and allows for semantic search over a large col-
lection of videos. The novelty and practicality is demon-
strated by the evaluation in NIST TRECVID 2014, where
the proposed system achieves the best performance. We
share our observations and lessons in building such a state-
of-the-art system, which may be instrumental in guiding the
design of the future system for semantic search in video.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Search pro-
cess; 1.2.10 [Vision and Scene Understanding]: Video
analysis

General Terms
Algorithms, Experimentation, Performance
Keywords

Semantic Search; Video Search; Video Understanding; 0Ex;
Content-based Retrieval; Multimedia Event Detection

1. INTRODUCTION

The explosion of multimedia data is creating impacts on
many aspects of society. The huge volumes of accumulated
video data bring challenges for effective multimedia search.
Existing solutions, such as shown in YouTube, are mainly
limited to text matching where the query words are matched
against the textual metadata generated by the uploader [7].
This solution, though simple, proves to be futile when such
metadata are either missing or less relevant to the video
content. Content-based search, on the other hand, searches
semantic features such as people, scenes, objects and action-
s that are automatically detected in the video content. A
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representative content-based retrieval task, initiated by the
TRECVID community, is called Multimedia Event Detec-
tion (MED) [32]. The task is to detect the occurrence of
a main event in a video clip without any textual metada-
ta. The events of interest are mostly daily activities ranging
from “birthday party” to “changing a vehicle tire”.
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Figure 1: Comparison of text and semantic query for
the event “birthday party”. Semantic queries con-
tain visual/audio concepts about the video content.

This paper discusses a setting in MED called zero-example
search [I8], or OEx for short, in which no relevant video is
given in the query. OEx supports semantic search which re-
lies on substantial video content understanding as opposed
to shallow text matching in conventional methods. The
query words are semantic features that are expected to occur
in the relevant videos. For example, as illustrated in Fig. [
the semantic query for the event “birthday party” might con-
sist of visual concepts “cake”, “gift” and “kids”, audio con-
cepts “birthday song” and “cheering sound”. 0Ex also allows
for flexible semantic search such as temporal or Boolean log-
ic search. For example, searching for videos where opening
gifts happens before consuming birthday cakes.

This paper details a state-of-the-art 0Ex system called
E-Lamp semantic search engine, and according to National
Institute of Standards and Technology (NIST), the proposed
system achieves the best performance in TRECVID 2014 on
a large collection of 200,000 Internet videos [32]. Our per-
formance is about three times of the second best system.
The outstanding performance is attributed to our rational
pipeline as well as its effective components. We share our
observations and lessons in building such a state-of-the-art
system. The lessons are valuable because of not only the ef-
fort in designing and conducting numerous experiments but
also the considerable computational resource to make the
experiments possible. For example, building the semantic
detectors costs us more than 1.2 million CPU core hours,
which is equivalent to 140 years if it is running on a sin-
gle core. We believe the shared lessons may significantly



save the time and computational cycles for others who are
interested in this problem.

The outstanding performance evaluated by NIST is a con-
vincing demonstration of the novelty and practicality of the
proposed system. Specifically, the novelty of this paper in-
cludes the solutions in system design and the insight on a
number of empirical studies on semantic video search. The
discussed techniques may also benefit other related tasks
such as video summarization and recommendation. In sum-
mary, the contribution of this paper is twofold:

e We share our observations and lessons in building a
state-of-the-art O0Ex event search system.

e Our pilot studies provide compelling insights on the
comparison of modality contributions, semantic map-
ping methods and retrieval models for event search.

2. RELATED WORK

Multimedia event detection is an interesting problem. A
number of studies have been proposed to tackle this prob-
lem on using several training examples (typically 10 or 100
examples) [14], O, 38 1T, BT, 19, B4, Bl B6]. Generally, in a
state-of-the-art system, the event classifiers are trained by
low-level and high-level features, and the final decision is de-
rived from the fusion of the individual classification results.
For example, Habibian et al. [11] found several interesting
observations about training classifiers only by semantic con-
cept features. Gkalelis et al. [9] learned a representation for
linear SVMs by subclass discriminant analysis, which yields
1-2 orders of magnitude speed-up. Wang et al. [38] discussed
a notable system in TRECVID 2012 that is characterized by
applying feature selection over so-called motion relativity
features. Oh et al. [3I] presented a latent SVM event detec-
tor that enables for temporal evidence localization. Jiang
et al. [I9] presented an efficient method to learn “optimal”
spatial event representations from data.

Event detection with zero training examples is called 0Ex.
It mostly resembles a real-world video search scenario, where
users usually start the search without any example video.
0Ex is an understudied problem, and only few studies have
been proposed very recently [6], [10] 26, [40] [I8] 23]. Dalton
et al. discussed a query expansion approach for concept
and text retrieval. Habibian et al. [I0] proposed to index
videos by composite concepts that are trained by combining
the labeled data of individual concepts. Wu et al. [40] in-
troduced a multimodal fusion method for semantic concepts
and text features. Given a set of tagged videos, Mazloom et
al. [26] discussed a retrieval approach to propagate the tags
to unlabeled videos for event detection. Jiang et al. [I8] [I5]
studied pseudo relevance feedback approaches which manage
to significantly improve the original retrieval results. Exist-
ing related works inspire our system. However, to the best
of our knowledge, there have been no studies on the 0Ex
system architecture nor the analysis of each component.

3. FRAMEWORK

Semantic search in video can be modeled as a typical
retrieval problem in which given a user query, we are in-
terested in returning a ranked list of relevant videos. The
proposed system comprises four major components, name-
ly Video Semantic INdexing (VSIN), Semantic Query Gen-
eration (SQG), Multimodal Search, and Pseudo-Relevance

Feedback (PRF)/Fusion, where VSIN is an offline indexing
component, and the rest are the online search modules.

The VSIN component extracts semantic features from in-
put videos, and indexes them for efficient online search.
Typically, a video clip is first represented by low-level fea-
tures such as dense trajectory features [39] for visual modali-
ty or deep learning features [27] 28] for audio modality. The
low-level features are then input into the off-the-shelf de-
tectors to extract the high-level features. Each dimension of
the high-level feature corresponds to a confidence score of de-
tecting a semantic concept in the video [14], [13]. Compared
with low-level features, high-level features have a much lower
dimension, which makes them economic for both storage and
computation. The visual/audio concepts, Automatic Speech
Recognition (ASR) [27] and Optical Character Recognition
(OCR) are four types of high-level features in the system,
in which ASR and OCR are textual features. ASR provides
complementary information for events that are characterized
by acoustic evidence. It especially benefits close-to-camera
and narrative events such as “town hall meeting” and “asking
for directions”. OCR captures the characters in videos with
low recall but high precision. The recognized characters are
often not meaningful words but sometimes can be a clue for
fine-grained detection, e.g. distinguishing “baby shower” and
“wedding shower”. The union of the dictionary vocabulary
of high-level features constitutes the system vocabulary.

Users can express a query in various forms, such as a few
concept names, a sentence or a structured description. NIST
provides a query in the form of event-kit descriptions, which
includes a name, definition, explication and visual/acoustic
evidences (see the left corner of Fig.[2)). The SQG componen-
t translates a user query into a multimodal system query, all
words of which exist in the system vocabulary. Since the vo-
cabulary is usually limited, addressing the out-of-vocabulary
issue is a major challenge for SQG. The mapping between
the user and system query is usually achieved with the aid
of an ontology such as WordNet and Wikipedia. For exam-
ple, a user query “golden retriever” may be translated to its
most relevant alternative “large-sized dog”, as the original
concept may not exist in the system vocabulary.

Given a system query, the multimodal search component
alms at retrieving a ranked list for each modality. As a pilot
study, we are interested in leveraging the well-studied text
retrieval models for video retrieval. To adapt the difference
between semantic features and text features, we empirically
study a number of classical retrieval models on various types
of semantic features. We then apply the model to its most
appropriate modalities. One notably benefit of doing so is
that it can easily leverage the existing infrastructures and
algorithms originally designed for text retrieval.

PRF (also known as reranking) refines a ranked list by
reranking its videos. A generic PRF method first selects a
few feedback videos, and assign assumed positive or negative
labels to them. Since no ground-truth label is used, the
assumed labels are called pseudo labels. The pseudo samples
are then used to build a reranking model to improve the
original ranked lists. A recent study shows that reranking
can be modeled as a self-paced learning process [I5], where
the reranking model is built iteratively from easy to more
complex samples. The easy samples are the videos ranked
at the top, which are generally more relevant than those
ranked lower. In addition to PRF, the standard late fusion
is applied in our system.
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Figure 2: Overview of the E-Lamp video search system.

4. SYSTEM IMPLEMENTATIONS

The devil is in the detail. Careful implementations often
turn out to be the cornerstone in many systems. To this
end, this section discusses each component in more detail.

4.1 Large-scale Semantic Indexing

Concept detectors can be trained on still images or videos.
The latter is more desirable due to the minimal domain dif-
ference and the capability for action and audio detection. A
visual/audio concept in our system is represented as a mul-
timodal document which includes a name, description, cate-
gory, reliability (accuracy) and examples of the top detected
video snippet. This definition provides a more tangible un-
derstanding about the concept for users.

The quantity (relevance) and quality of the semantic de-
tectors are two crucial factors in affecting performance. The
relevance is measured by the coverage of the concept vocab-
ulary to the query, and thus is query-dependent. For conve-
nience, we name it quantity as a larger vocabulary tends to
increase the coverage. Quality is evaluated by the accuracy
of the detector. Given limited resources, there exists a trade-
off between quality and quantity, i.e. building many unreli-
able detectors versus building a few reliable detectors. This
tradeoff has been studied when there are several training ex-
amples [12] [T1]. This paper presents a novel understanding
about the tradeoff when there is no training example. The
observations suggest that training more reasonably accurate
detectors tends to be a sensible strategy.

Training detectors on large-scale video datasets increas-
es both quantity and quality. But it turns out to be quite
challenging. We approach this challenging problem with ef-
fort in two aspects. In theoretical aspect, a novel and ef-
fective method named self-paced curriculum learning [17] is
explored. The idea is that, as opposed to training a detec-
tor using all samples at a time, we train increasingly com-
plex detectors iteratively on balanced data subsets. The
scheme of selecting samples to be trained in each iteration
is controlled by a regularizer [22] [16] [I7], and can be con-
veniently replaced to fit various problems. As for practical
aspect, the module is optimized by storing kernel matrices
in large shared-memory machines. This strategy yields 8
times speedup in training, enabling us training 3 thousand
detectors over around 2 million videos (and video segments).

In practice, in order to index huge volume of video data, the
detectors need to be linear models (linear SVM or logistic re-
gression), and nonlinear models have to be first transformed
to the linear models (e.g. by explicit feature mapping [37]).

The ASR module is built on Kaldi [33] by training the
HMM/GMM acoustic model with speaker adaptive train-
ing [27) 29] on videos. The trigram language model is pruned
aggressively to speed up decoding. OCR is extracted by
a commercial toolkit. The high-level features are indexed.
The confidence scores for ASR and OCR are discarded, and
the words are indexed by the standard inverted index. The
visual/audio concepts are indexed by dense matrices to pre-
serve their detection scores.

4.2 Semantic Query Generation

SQG translates a user query into a multimodal system
query which only contains words in the system vocabulary.
The first step in SQG is to parse negations in the query to
recognize counter-examples. The recognized examples can
be either discarded or to be associated with a “NOT” op-
erator in the system query. Given TRECVID provides us-
er queries in the form of event-kit description (see the left
corner of Fig. 2)), an event can be represented by the even-
t name (1-3 words) or the frequent words in the event-kit
description (after removing the template and stop words).
These representations can be directly used as system queries
for ASR/OCR as their vocabularies are sufficiently large to
cover most words. For visual/audio concepts, the represen-
tations are used to map the out-of-vocabulary query words
to their most relevant concepts in the system vocabulary.
This mapping in SQG is challenging because of the complex
relation between concepts. The relation between concepts
includes mutual exclusion, subsumption, and frequent co-
occurrence. For example, “cloud” and “sky” are frequently
co-occurring concepts; “dog” subsumes “terrier”; and “blank
frame” excludes “dog”. Our system includes the following
mapping algorithms to map a word in the user query to the
concept in the system vocabulary:

Exact word matching: A straightforward mapping is
matching the exact query word (usually after stemming) a-
gainst the concept name or description. Generally, for un-
ambiguous words, it has high precision but low recall.

WordNet mapping: This mapping calculates the sim-
ilarity between two words in terms of their distance in the



WordNet taxonomy. The distance can be defined in vari-
ous ways such as structural depths in the hierarchy [41] or
shared overlaps between synonymous words [1]. WordNet
mapping is good at capturing synonyms and subsumption
relations between two nouns.

PMI mapping: The mapping calculates the Point-wise
Mutual Information (PMI) [5] between two words. Suppose
¢; and g; are two words in a user query, we have:

P(qi7Qj|CO7lt) (1)
i|Cont) P(q;|Cont)’

where P(qi|Cont), P(q;|Cont) represent the probability of ob-
serving ¢; and ¢; in the ontology Con: (e.g. a collection of
Wikipedia articles), which is calculated by the fraction of the
document containing the word. P(gs, q;|Cont) is the prob-
ability of observing the document in which ¢; and ¢; both
occur. PMI mapping assumes that similar words tend to co-
occur more frequently, and is good at capturing frequently
co-occurring concepts (both nouns and verbs).

Word embedding mapping: This mapping learns a
word embedding that helps predict the surrounding words
in a sentence [30 24]. The learned embedding, usually by
neural network models, is in a lower-dimensional vector s-
pace, and the cosine coefficient between two words is often
used to measure their distance. It is fast and also able to
capture the frequent co-occurred words in similar contexts.

4.3 Multimodal Search

Given a system query, the multimodal search componen-
t aims at retrieving a ranked list for each modality. We
are interested in leveraging the well-studied text retrieval
models for video retrieval. There is no single retrieval mod-
el that can work the best for all modalities. As a result,
our system incorporates several classical retrieval models
and applies them to their most appropriate modalities. Let
Q = q1,...,qn denote a system query. A retrieval mod-
el ranks videos by the score s(d|Q), where d is a video in
the video collection C'. Our system includes the following
retrieval models:

Vector Space Model (VSM): This model represents
both a video and a query as a vector of the words in the sys-
tem vocabulary. The common vector representation includes
generic term frequency (tf) and term frequency-inverse doc-
ument frequency (tf-idf) [42]. s(d|@) derives from either the
product or the cosine coefficient between the video and the

query vector.
Okapi BM25: This model extends tf-idf representation:

pmi(gi; ¢j) = log B

O] - df(g)+3
d = 1
s@) ZZ:1og df(qi)+1

tf(gs d)(k1+1)
tf (g, d)+hr (1—b+br2ld)
(2)

where |C] is the total number of videos. df(-) returns the

document frequency for a given word in the collection; ¢ f(g:, d)

returns the raw term frequency for the word ¢; in the video
d. len(d) calculates the sum of concept or word detection
scores in the video d, and len is the average video length in
the collection. ki and b are two parameters to tune m In
the experiments, we set b = 0.75, and tune k1 in [1.2,2.0].
Language Model-JM Smoothing (LM-JM): The s-
core is considered to be generated by a unigram language

model [45]:

s(d|Q) = log P(d|Q) o log P(d) + Y log P(gild),  (3)

i=1

where P(d) is usually assumed to be following the uniform
distribution, i.e. the same for every video. P(g;|d) equals:
Plald) = A< + (0= P@lo), @)
where w enumerates all words or concepts in a given video,
and P(g;|C) is called a smoother that can be calculated by
df(g:)/|C|. Eq. @ linearly interpolates the maximum likeli-
hood estimation (first term) with the collection model (sec-
ond term) by a coefficient A\. The parameter is usually tuned
in the range of [0.7,0.9]. This model is good for retrieving
long text queries, e.g. the frequent words in the event kit
description.
Language Model-Dirichlet Smoothing (LM-DL): This
model adds a conjugate prior to the language model:

tf(gi, d) + pP(q:|C)
where p is the coefficient balancing the likelihood model and
the conjugate prior, and is usually tuned in [0,2000] [45].
This model is good for short text queries, e.g. the event
name representation.

4.4 Pseudo Relevance Feedback

PRF (or reranking) is a cost-effective method in improv-
ing performance. Studies have shown that it might hurt a
few queries but generally improves the overall performance
across all queries. We incorporate a general multimodal
PRF method called SPaR [15] in our system.

Self-Paced Reranking (SPaR): This method is inspired
by the cognitive and learning process of humans and animal-
s that gradually learning from easy to more complex sam-
ples |2l 22] (17, 46]. The easy samples in this problem are
the videos ranked at the top, which are generally more rel-
evant than those ranked lower. SPaR can take the input of
either a single fused ranked list or a number of ranked lists
from each of the modalities[] For convenience of notation,
we mainly discuss the case of a single ranked list. Let ©
denote the reranking model. x; denotes the feature of the
ith video and y; for the ith pseudo label. Note that z; could
be both high-level and low-level features [18]. We have:

Jnin 2 viL(xi,9i;0) + f(v; A) ©)

s.t. Constraints on O,y € {—1,+1}",v € [0,1]",

where v = [1}17 .. 7vn] are latent weight variables for each
sample; L is the loss function in O; f is self-paced function
which determines the learning scheme, i.e. how to select and
weight samples. A is a parameter controlling the model age.
When A is small, a few easy samples with smaller loss will
be considered. As A grows, more samples with larger loss
will be gradually appended to train a mature model.

To run PRF in practice, we first need to pick a rerank-
ing model © (e.g. SVM or regression model), a self-paced
function (e.g. binary, linear or mixture weighting) [15] [17],
and reasonable starting values for the pseudo labels. The s-
tarting values can be initialized either by top ranked videos
in the retrieved ranked lists or by other PRF methods. Af-
ter the initialization, we iterate the following three steps:

“When different retrieval models are used for different features,
and their ranked lists have very different score distributions, we
may need to solve a linear programming problem to determine
the starting pseudo positives [1§].



1) training a model based on the selected pseudo samples
and their weights (fixing v,y, optimize ©); 2) calculating
pseudo positive samples and their weights by the self-paced
function f, and selecting some pseudo negative samples ran-
domly (fixing ©, optimize v,y )J; the weights of pseudo pos-
itive samples may be directly calculated by the closed-form
solutions of f [I5]; 3) increasing the model age to include
more positive samples in the next iteration (increase A). The
value of \ is increased not by the absolute value but by the
number of positive samples to be included. For example, if 5
samples need to be included, we can set A by the 6th smallest
loss so that the samples whose loss are greater than A will
have 0 weight. In our system, MMPRF [I8] and SPaR [I5]
are incorporated, in which MMPRF is used to assign the
starting values, and SPaR is used as the core algorithm.
Average fusion of the PRF result with and original ranked
list is used to obtain better results.

PRF is a cost-effective method in improving the perfor-
mance of event search. We observed that the precision of
the pseudo positives determines the performance of PRF
(see Fig.5 in [I8]). Therefore, high precision features such
as OCR and ASR often turns out to be very useful. In
addition, soft weighting self-paced functions that discrimi-
nate samples at different ranked positions tend to be bet-
ter than binary weighting functions [I5]. In this case, the
model should support sample weighting (e.g. Libsvm tools-
weights [4]). We observed two scenarios where the discussed
reranking method could fail. First, SPaR may not help when
the accuracy of the starting pseudo positive samples is be-
low some threshold (e.g. the precision of pseudo positive is
less than 0.1). This may be due to less relevant queries or
poor quality of the high-level features. In this case, SPaR
may not be useful. Second, SPaR may not help when the
features used in PRF are not discriminative.

5. EXPERIMENTS
5.1 Setups

Dataset and evaluation: The experiments are conduct-
ed on the TRECVID Multimedia Event Detection (MED)
MED13Test and MED14Test, evaluated by the official met-
ric Mean Average Precision (MAP). Each set includes 20
events and 25,000 testing videos. The official test split re-
leased by NIST is used, and the reported MAP is compa-
rable with others on the same split. The experiments are
conducted without using any examples. We also evaluate
each experiment on 10 randomly generated splits to reduce
the bias brought by the split partition. The mean and 90%
confidence interval are reported. Besides, the official results
on MED14Eval evaluated by NIST TRECVID is also report-
ed in the performance overview.

Features and queries: High-level features are Auto-
matic Speech Recognition (ASR), Optical Character Recog-
nition (OCR), and visual semantic concepts. ImageNet fea-
tures are trained on still images by deep convolution neural
networks [2I]. The rest are directly trained on videos by the
SVM-based self-paced learning pipeline [16} [I7]. The video
datasets include: Sports [20], Yahoo Flickr Creative Com-
mon (YFCC) [35], Internet Archive Creative Common (IAC-
C) [32] and Do it Yourself (DIY) [43]. The details of these
datasets can be found in Table[Il In total, 3,043 video-based

2 The reason we can randomly select pseudo negative samples is
that they have negligible impacts on performance [18].

concept detectors are trained using the improved dense tra-
jectory features [39], which costs more than 1.2 million CPU
core hours (1,024 cores for about 2 months) in Pittsburgh
Super-computing Center. Once trained, the detection (se-
mantic indexing) for test videos is very fast. Two types of
low-level features are used: dense trajectories [39] and MFC-
C [44] in the PRF model. The detailed configuration about
PREF is available in the supplementary materiald]. The input
user query is the event-kit description. The system query is
obtained by a two-step procedure: a preliminary mapping
is automatically generated by the discussed mapping algo-
rithms. The results are then examined by human expert-
s to figure out the final system query. See supplementary
materials for the example of user and system queries. For
ASR/OCR, the automatically generated event name and de-
scription representation are used as the system query. Note
that manual query examination is allowed in TRECVID and
is used by many teams [32]. The automatically generated
queries will be discussed in Section [B.5l

5.2 Performance Overview

We first examine the overall MAP (x100) of the full sys-
tem. Table [ lists the MAP and the runtime (ms/query)f
across six datasets. The average MAP and the 90% confi-
dence interval on the 10-splits are reported on MED13Test
and MED14Test. The ground-truth data on MED14Eval
has never been released, and thus the MAP evaluated by
NIST TRECVID is only available on the single split. We
observed that the results on a single split can be deceiving
as no training data makes the result prone to overfitting.
Therefore, we evaluate the MAP also on the ten splits. We
observed that an improvement is statistically significant if it
can be observed in the both cases.

Our system achieves the best performance across all of the
datasets. According to [32], for example, Fig. [ illustrates
the comparison on the largest set of around 200,000 Internet
videos, where the z-axis lists the system of each team, and
the y-axis denotes the MAP evaluated by NIST TRECVID.
The red bars represent our system with and without PRF.
As we see, our system achieves the best performance which is
about three times of the second best system. The improve-
ment of PRF is evident as it is the only difference between
the two red bars in Fig. It is worth noting that the e-
valuation is very rigid because each system can only submit
a single run within 60 minutes after getting the query, and
the ground-truth data is not released even after the sub-
mission. In addition, for the ad-hoc events (see Fig. B(b))
the query are generated online and unknown to the system
beforehand. Since blind queries are more challenging, all
systems perform worse on ad-hoc events. Nevertheless, our
system still achieves an outstanding MAP.

5.3 Modality/Feature Contribution

Table [B] compares the modality contribution, where each
run represents a system with a certain configuration. The
MAP is evaluated on MED14Test and MED13Test, where
the ground-truth data is available. As we see, visual modal-
ity is the most contributing modality, which by itself can
recover about 85% MAP of the full system. ASR and OCR

3http ://www.cs.cmu.edu/"lujiang/0Ex/icmrl5.html

4The time is the search time evaluated on an Intel Xeon 2.53GHz
CPU. It does not include the PRF time, which is about 238ms
over 200K videos.
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Table 1: Summary of the datasets for training semantic visual concepts. ImageNet features are trained on

still images, and the rest are trained on videos.

Dataset #Samples  #Classes Category Example Concepts

DIY [43]144] 72,000 1,601 Instructional videos Yoga, Juggling, Cooking
IACC [32] 600,000 346 Internet archive videos Baby, Outdoor, Sitting down
YFCC [35] 800,000 609 Amateur videos on Flickr  Beach, Snow, Dancing
ImageNet [§] || 1,000,000 1000 Still images Bee, Corkscrew, Cloak
Sports [20] 1,100,000 487 Sports videos on YouTube Bullfighting, Cycling, Skiing

Table 2: Overview of the system performance.

MAP (x100) time

Dataset #Videos 1-split 10-splits (ms)
MED13Test 25K 20.75  19.47£1.19 80
MED14Test 25K 20.60 17.27+£1.82 112
MED14EvalSub-PS 32K 24.1 - 192
MED14EvalSub-AH 32K 22.1 - 200
MED14Eval-PS 200K 18.1 - 1120
MED14Eval-AH 200K 12.2 - 880

WOur Systems WOur Systems
noPRF - \llOther Systems WOther Systems

(a) Pre-Specified (PS)

Figure 3: The official results released by NIST
TRECVID 2014 on MED14Eval (200, 000 videos).

(b) Ad-Hoc (AH)

provide contribution to the full system but prove to be much
worse than the visual features. PRF is beneficial in improv-
ing the performance of the full system.

To understand the feature contribution, we conduct leave-
one-feature-out experiments. The performance drop, after
removing the feature, can be used to estimate its contribu-
tion to the full system. As we see in Table @] the results
show that every feature provides some contribution. As the
feature contribution is mainly dominated by a number of dis-
criminative events, the comparison is more meaningful at the
event-level (see supplementary materials?’)7 where one can
tell that, for example, the contribution of ImageNet mainly
comes from three events E031, EO15 and E037. Though the
MAP drop varies on different events and datasets, the av-
erage drop on the two datasets follows: Sports > ImageNet
> ASR > IACC > YFCC > DIY > OCR. The biggest con-
tributor Sports is also the most computationally expensive
feature. In fact, the above order of semantic concepts highly
correlates to #samples in their datasets, which suggests the
rationale of training concepts over big data sets.

Table 3: Comparison of modality contribution.

Run MEDlSTest. l\./IED14Test.
1-split 10-splits 1-split 10-splits
FullSys+PRF 22.12 - 22.05 -
FullSys 20.75  19.47£1.19 | 20.60 18.7742.16
VisualSys 18.31  18.30%1.11 | 17.58  17.27£1.82
ASRSys 6.53 6.90+0.74 5.79 4.26+£1.19
OCRSys 2.04 4.14+0.07 1.47 2.20+0.73

5.4 Quantity (Relevance) & Quality Tradeoff

To study the concept quantity (relevance) and quality
trade-off, we conduct the following experiments where the
TACC and ImageNet concepts are gradually added to the
query, one at a time, according to their relevance. The rel-
evance judgment is manually annotated by a group of as-
sessors on 20 events. Fig. [ illustrates the results on a rep-
resentative event, where the z-axis denotes the number of

concepts included, and the y-axis is the average precision.
Each curve represents a trial of only selecting concepts of
certain quality. The quality is manually evaluated by the
precision of the top 10 detected examples on a third data-
set. For example, the red curve indicates selecting only the
relevant concepts whose precision of the top 10 detected ex-
amples is greater than 0.5. The blue curve marked by circles
(p@Q10 > 0) is a trial of the largest vocabulary but on average
the least accurate concepts. In contrast, the dashed curve is
of the smallest vocabulary but the most accurate concepts,
and thus for a query, there are fewer relevant concepts to
choose from. As we see, neither of the settings is optimal.
Selecting concepts with a reasonable precision, between 0.2
and 0.5 in this case, seems to be a better choice. The results
suggest that incorporating more relevant concepts with rea-
sonable quality is a sensible strategy. We also observed that
merely increasing the number of low-quality concepts may
not be helpful.

o
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Figure 4: Adding relevant concepts in “E037 Park-
ing a vehicle” using concepts of different precisions.

5.5 Semantic Matching in SQG

We apply the SQG algorithms to map the user query to
the concept in the vocabulary. We use two metrics to com-
pare these mapping algorithms. One is the precision of the
5 most relevant concepts returned by each algorithm. We
manually assess the relevance for 10 events (E031-E040) on
4 concept features (i.e. 200 pairs for each mapping algorith-
m). The other is the MAP obtained by the 3 most relevant
concepts. Table [l lists the results, where the last column
lists the runtime of calculating the mapping between 1,000
pairs of words. The second last row (Fusion) indicates the
average fusion of the results of all mapping algorithms. As
we see, in terms of P@5, PMI is slightly better than other-
s, but it is also the slowest because its calculation involves
looking up a index of 6 million articles in Wikipedia. Fusion
of all mapping results yields a better PQ5.

‘We then combine the automatically mapped semantic con-
cepts with the automatically generated ASR and OCR query
to test the MAP. Here we assume users have specified which
feature to use for each query, and SQG is used to automati-
cally find relevant concepts or words in the specified features.
Our result can be understood as an overestimate of a fully-
automatic SQG system, in which users do not even need to
specify the feature. As we see in Table Bl PMI performs
the best on MED13Test whereas on MED14Test it is Ex-
act Word Matching. The fusion of all mapping results (the



Table 4: Comparison of feature contribution.

Visual Concepts MAP
SysID IACC Sports YFCC IIJDIY ImageNet ASR  OCR 1-split 10-splits MAP Drop(%)
MED13/TACC v v v v v v 18.93 18.61+1.13 9%
MED13/Sports v v v v v v 15.67 14.684+0.92 25%
MED13/YFCC v v v v v v 18.14  18.474+1.21 13%
MED13/DIY v v v v v v 19.95 18.70+1.19 4%
MED13/ImageNet v v v v v v 18.18  16.58+1.18 12%
MED13/ASR v v v v v v 18.48 18.784+1.10 11%
MED13/0OCR v v v v v v 20.59  19.12+1.20 1%
MED14/TIACC v v v v v v 18.34  17.79+1.95 11%
MED14/Sports v v v v v v 13.93  12.4741.93 32%
MED14/YFCC v v v v v v 20.05 18.55+2.13 3%
MED14/DIY v v v v v v 20.40  18.42+2.22 1%
MED14/ImageNet v v v v v v 16.37 15.21+1.91 20%
MED14/ASR v v v v v v 18.36  17.624+1.84 11%
MED14/0OCR v v v v v v 20.43  18.86+2.20 1%

second last row) improves the MAP on both the datasets.
We then fine-tune the parameters of the mapping fusion and
build our AutoSQG system (the last row). As we see, Au-
t0oSQG only achieves about 55% of the full system’s MAP.
Several reasons account for the performance drop: 1) the
concept name does not accurately describe what is being
detected; 2) the quality of mapping is limited (P@5=0.42);
3) relevant concepts may not necessarily be discriminative.
For example, “animal” and “throwing ball” appear to be rel-
evant to the query “playing a fetch”, but the former is too
general and the latter is about throwing a baseball which
is visually different; “dog” is much less discriminative than
“group of dogs” for the query “dog show”. The results sug-
gest that the automatic SQG is not well-understood. The
proposed automatic mappings are still very preliminary, and
could be further refined by manual inspection. We found it
is beneficial to represent a concept as a multimodal docu-
ment that includes a name, description, category, reliability
(accuracy) and examples of the top detected video snippet.

Table 5: Comparison of SQG mapping algorithms.

. MAP .
Mapping Method pP@5s 13Test  14Test Time (s)
Exact Word Matching || 0.340 9.66 7.22 0.10
WordNet 0.330 7.86 6.68 1.22
PMI 0.355 9.84 6.95 22.20
Word Embedding 0.335 8.79 6.21 0.48
Mapping Fusion 0.420 10.22 9.38 -
AutoSQGSys - 12.00 11.45 -

5.6 Comparison of Retrieval Methods

Table [l compares the retrieval models on MED14Test us-
ing four features: ASR, OCR and two types of visual con-
cepts. As we see, there is no single retrieval model that works
the best for all features. For ASR and OCR words, BM25
and Language Model with JM smoothing (LM-JM) yield the
best MAPs. An interesting observation is that VSM can on-
ly achieve 50% MAP of LM-JM on ASR (2.94 versus 5.79).
This observation suggests that the role of retrieval models
in video search is substantial. For semantic concepts, VSM
performs no worse than other models. We hypothesize that
it is because the concept representation is dense, i.e. every
dimension has a nonzero value, and thus is quite differen-
t from sparse text features. To verify this hypothesis, we
sparsify the Sports representation using a basic approach,
where we only preserve the top m dimensions in a video,
and m is set proportional to the concept vocabulary size.
As we see, the sparse feature with 1% nonzero elements can
recover 85% of its dense representation. Besides, BM25 and

LM exhibit better MAPs in the sparse representation. Since
the dense representation is difficult to index and search, the
results suggest a promising direction for large-scale search
using the sparse semantic feature.

Table 6: Comparison of retrieval models on
MED14Test using ASR, OCR, Sports and IACC.

Feat. Split VSM-tf VSM-tfidf BM25 LM-JM LM-DP
ASR 1 2.94 1.26 3.43 5.79 1.45
10 2.67 1.49 3.03 4.26 1.14
1 0.56 0.47 1.47 1.02 1.22
OCR 10 2.50 2.38 4.52 3.80 4.07
Sports 9.21 8.97 8.83 8.75 7.57
p 10 10.61 10.58 10.13 10.25 9.04
1 3.49 3.52 2.44 2.96 2.06
TACC 2.88 2.77 2.05 2.45 2.08
Table 7: Study of retrieval performance using sparse

concept features (Sports) on MED14Test.

Density || VSM-tf BM25 LM-JM LM-DP
1% 9.06 9.58 9.09 9.38
2% 9.93 10.12 10.14 10.07
4% 10.34 10.36 10.26 10.38
16% 10.60 10.45 10.03 9.89

100% 10.61 10.13 10.25 9.04

6. CONCLUSIONS AND FUTURE WORK

We proposed a state-of-the-art semantic video search en-
gine called E-Lamp. The proposed system goes beyond con-
ventional text matching approaches, and allows for semantic
search without any textual metadata or example videos. We
shared our lessons on system design and compelling insights
on a number of empirical studies. From the experimental
results, we arrive at the following recommendations.

e Recommendation 1: Training concept detectors on big
data sets is ideal. However, given limited resources, build-
ing more detectors of reasonable accuracy seems to be a
sensible strategy. Merely increasing the number of low-
quality concepts may not improve performance.

e Recommendation 2: PRF (or reranking) is an effective
approach to improve the search result.

e Recommendation 3: Retrieval models may have sub-
stantial impacts to the search result. A reasonable strat-
egy is to incorporate multiple models and apply them to
their appropriate features/modalities.

¢ Recommendation 4: Automatic query generation for
queries in the form of event-kit descriptions is still very
challenging. Combining mapping results from various map-
ping algorithms and applying manual examination after-
ward is the best strategy known so far.



This paper is merely a first effort towards semantic search
in Internet videos. The proposed system can be improved
in various ways, e.g. by incorporating more accurate visual
and audio concept detectors, by studying more appropriate
retrieval models, by exploring search interfaces or interactive
search schemes. As shown in our experiments, the automatic
semantic query generation is not well understood. Closing
the gap between the manual and automatic query may point
to a promising direction.
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