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ABSTRACT
Many content-based video search (CBVS) systems have been pro-
posed to analyze the rapidly-increasing amount of user-generated
videos on the Internet. Though the accuracy of CBVS systems
have drastically improved, these high accuracy systems tend to be
too inefficient for interactive search. Therefore, to strive for real-
time web-scale CBVS, we perform a comprehensive study on the
different components in a CBVS system to understand the trade-
offs between accuracy and speed of each component. Directions
investigated include exploring different low-level and semantics-
based features, testing different compression factors and approxi-
mations during video search, and understanding the time v.s. ac-
curacy trade-off of reranking. Extensive experiments on data sets
consisting of more than 1,000 hours of video showed that through
a combination of effective features, highly compressed represen-
tations, and one iteration of reranking, our proposed system can
achieve an 10,000-fold speedup while retaining 80% accuracy of a
state-of-the-art CBVS system. We further performed search over 1
million videos and demonstrated that our system can complete the
search in 0.975 seconds with a single core, which potentially opens
the door to interactive web-scale CBVS for the general public.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing; H.4 [Information Systems Applications]: Miscel-
laneous

General Terms
Algorithms, Experimentation, Performance

Keywords
Content-Based Video Search; Multimedia Event Detection; Prod-
uct Quantization; Reranking; Semantic Concept Detection

1. INTRODUCTION
Large-scale analysis of video data becomes ever more impor-

tant as we see an unprecedented growth of user-generated videos
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on the Internet. To perform search, current video search engines
mostly rely on user provided text metadata. However, text meta-
data is not a comprehensive representation of the video as an user
cannot possibly annotate all pieces of information in a video. Also,
it is often the case that the users do not provide any metadata at
all, and these videos can never be retrieved by a metadata-based
search engine. Therefore, we turn to content-based video analy-
sis, which leverages the very rich content in the visual and audio
channels of a video, for search. In the multimedia community, this
task has been studied in the form of Multimedia Event Detection
(MED) [20]. The task can be split into two main phases: feature
extraction and search. The main goal of feature extraction is to
extract discriminative feature representations from the video’s raw
visual and audio channels. Extracting effective, generalizable and
efficient representations is a key challenge of this phase. During
the search phase, which we refer to as Content-Based Video Search
(CBVS), the queries are a set of example videos, and the CBVS sys-
tem will utilize the previously extracted features to retrieve relevant
videos. As the extracted feature representations are not text-based,
traditional text-retrieval techniques are not directly applicable, and
new search techniques need to be developed.

Much research have been proposed to improve the accuracy of
content-based video analysis systems [19, 28, 30, 10, 25, 8, 23, 29,
2] and optimizing the speed of feature extraction [14, 16], but an
important direction which is still under-explored is achieving real-
time CBVS. For a CBVS system to be conveniently utilized by an
user, the retrieval of large video collections needs to be done in
real-time. However, near real-time content-based video search is
a challenging task because, unlike text vectors which are high di-
mensional but very sparse, visual and audio features are all high
dimensional dense vectors. Thus many state-of-the-art CBVS sys-
tems [30] still require a few minutes to perform retrieval, which is
still too slow for interactive use. Though there are some work [17]
which have found that compact semantics-based representations
potentially achieve better performance than low-level features, these
studies did not focus on utilizing such compact representations to
optimize the speed of CBVS systems. Therefore, in this paper we
focus on performing a comprehensive study on the different direc-
tions and methods to optimizing the speed of CBVS systems.

We introduce a number of aspects to optimize existing state-of-
the-art CBVS systems, which include the set of features used, the
learning algorithm, different compression and approximation con-
figurations, and the number of reranking iterations. Comprehen-
sive experiments to explore the speedup and accuracy trade-offs
in each direction were performed, which resulted in a CBVS sys-
tem that achieves a 10,000-fold speedup while retaining 80% Mean
Average Precision1 (MAP) of a top performing system [30] in the
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Figure 1: Pipeline of CBVS system.

TRECVID 2014 MED [20] task. In sum, the contributions of our
paper are as follows.

1. A CBVS system which can search over 1 million videos with
only 1 core in about 1 second is proposed. The proposed
CBVS system provides over 10,000-fold speedup while re-
taining 80% of the MAP of a state-of-the-art system [30].
This potentially opens the door to interactive web-scale CBVS
for the general public.

2. We comprehensively explore the speedup and accuracy trade-
offs of many different components in state-of-the-art CBVS
systems. These experiments may provide insight to the de-
signing of future CBVS systems.

2. THE CBVS SYSTEM
Assume the following typical usage scenario for CBVS. The user

performs an initial metadata-based text search to find a few videos
of interest in the video repository. As the user would like to find
more relevant videos, the user-selected videos of interest, which
we refer to as the “example videos”, can be provided to the CBVS
system. The system will retrieve, based on video content, more
videos related to the query and return them to the user. The videos
retrieved by CBVS may or may not have metadata, which is the key
advantage of CBVS systems over metadata-based text search.

Our proposed CBVS system, which follows the pipeline of the
top-performing TRECVID MED systems [19, 30, 23], has three
main components: query model training, prediction and reranking.
The query model training step trains query models for each fea-
ture representation based on the example videos provided by the
user. The prediction step takes the trained query models and per-
forms prediction on an indexed repository set. Weighted fusion is
performed to fuse the features from different modalities. Finally,
the reranking step will enhance the initial retrieved results. The
pipeline of our proposed CBVS system is shown in Figure 1.

To design a fast CBVS system, understanding the details of each
component is necessary to find the sweet spot between speed and
accuracy. Also, since we are allowed to perform offline preprocess-
ing to index videos, the algorithms should be carefully designed
such that most of the time-consuming computation is done in the
offline phase, and only the necessary computation is done in the
time-critical online phase. In the following sections, the details of
each step are described and the implications of each design choice
are discussed.

2.1 Fast Query Model Training
Query model training learns a model to discriminate relevant and

irrelevant videos to the user query. To train the model, example
videos are treated as positive samples and background videos are
treated as negative samples. Support Vector Machines (SVM) [3]
have been a popular choice for training query models [30, 22]. Fur-
thermore, linear SVMs are very efficient during prediction, because

prediction on an unseen instance only involves a single dot-product.
In the following paragraphs, we will describe how to efficiently
train query models for both linear and non-linear feature represen-
tations with linear SVMs.

It has been shown that SVMs with χ2-kernels are very effec-
tive for bag-of-words features [22], which is an effective encoding
method for low-level features. However, for SVMs, kernel-based
prediction of an input vector is slow because prediction requires
a dot product with all support vectors. Therefore, to still utilize
kernel-based features but achieve fast prediction, the Explicit Fea-
ture Map [26] can effectively convert a kernel-based feature to a
linear-based feature [22]. This results in substantial speedup with
unsubstantial performance drop.

We now focus on efficient training of linear SVMs, which needs
to be fast as the query models are trained on the fly. Linear SVMs
can be trained at approximately O(nd) [13] time by solving the
primal, or at approximately O(n2d + n3) [1] time by solving the
dual, where n is the number of training vectors and d is the dimen-
sions of a feature representation. There are two terms in the com-
plexity formula of solving the SVM dual: pair-wise dot-product
matrix computation time O(n2d) and model training time O(n3).
The primal is in general faster to solve, but when d becomes very
large, the dual can be faster to solve if the dot-product matrix can
be precomputed offline. The online cost of solving the dual form
becomes only O(n3), which in practice is very fast. Experiments
in Section 3.1 substantiates this claim.

For efficiently solving the dual form of SVMs, the pair-wise dot-
product matrix needs to be precomputed offline. If we have nc

videos in the repository set, the entire dot-product matrix is of size
O(n2

c), which is prohibitively large as the repository set may have
up to millions of videos. However, the training of SVMs only re-
quire the pair-wise dot-product of all vectors in the training set,
which only includes the example videos and the background set,
so precomputing the full matrix is not required. Let C ∈ Rd×nc

be the feature matrix for all nc videos in the search repository. Let
E ∈ Rd×ne be the feature matrix for ne example videos, which is a
subset of C as the example videos are included in the search repos-
itory. Let B ∈ Rd×nb be the feature matrix for nb background
videos. We combine E and B to create the training feature ma-
trix F = [E,B] ∈ Rd×(ne+nb). Then the pair-wise dot-product
matrix is as follows:

FTF =

[
ET

BT

] [
E B

]
=

[
ETE ETB
BTE BTB

]
. (1)

Since the background set is fixed and relatively small (several thou-
sand videos), we can precompute BTB and store it in memory. To
quickly acquire ETB, we first precompute CTB offline, and dur-
ing the online step only ne rows need to be read fromCTB to form
ETB because E is a subset of C. CTB is stored on disk. Finally,
the only part remaining is ETE, which can be computed quickly
on the fly as there will not be many example videos (tens of videos).



To summarize, the three steps taken to efficiently train a linear
SVM is as follows. First, the pair-wise dot-product matrix for the
query is assembled on the fly, which is fast because most of the
matrix is already precomputed. Second, the SVM is trained by
solving the dual, and a set of support vectors and their correspond-
ing weights are acquired. Finally, the dual solution is converted
to the primal solution, so that the final linear SVM model is only
a d dimensional vector which supports fast prediction. This step
consists of a weighted sum of all the support vectors’ raw features,
i.e. matrices E and B. This can be performed quickly if E and B
are pre-loaded in main memory. In our actual implementation, B
is pre-loaded, and E is read from disk on the fly, which is still fast
since there are only a few example videos.

2.2 Fast Prediction
We describe how one could achieve fast prediction of linear SVM

models over testing data. The prediction of a single instance re-
quires a dot product with the model. A simple way to find top-
ranked videos in the repository set is to exhaustively compute the
dot-product for all videos. However, this is too inefficient as the
repository size grows larger. As the dot product is highly related
to the Euclidean distance [21], approximate nearest neighbor tech-
niques can be used to save computation time. Many approximate
nearest neighbor search methods have been proposed, such as KD-
Tree-based Approximate Nearest Neighbors [18] and Locality Sen-
sitive Hashing [5], but these methods tend to be too memory con-
suming [9]. Also, these methods tend to be not as effective when
the number of dimensions of the vector space is significantly higher
than the number of instances in the search set. Therefore, we focus
on using Product Quantization (PQ) [9], which takes into account
efficiency in both computation and memory. Given a d dimensional
feature representation, PQ will split the high-dimensional space
into s subspaces, where each subspace is of dimension c = d

s
as-

suming d is divisible by s. Then, the vector belonging to each of
the subspace are quantized with a short code. The short codes from
different subspaces are concatenated to form a compact represen-
tation of the original vector. The dot-product between two vectors
can be efficiently estimated using this compact representation.

The PQ framework has a codebook learning, quantization, and
prediction phase. In the codebook learning phase, a codebook for
each small subspace is learned with K-Means clustering whereK =
256. K = 256 is preferable because the cluster ID can be repre-
sented by a single byte. We define Di ∈ Rc×256, 1 ≤ i ≤ s as the
codebook for the i-th subspace.

In the quantization phase, each input vector is split into s sub-
spaces and quantized according to the corresponding codebooks.
Specifically, let v = [vT1 , v

T
2 , . . . , v

T
s ] ∈ Rd be an input vector,

where vi ∈ Rc falls in subspace i. For each vi, a nearest neigh-
bor is found in Di, and vi is represented by the ID of the nearest
neighbor: qi, which ranges from 0 to 255 and takes up 1 byte. At
the end, v is quantized with s bytes, i.e. q = [q1, q2, . . . , qs] ∈
{0, 1, . . . , 255}s. This is a compact representation in that we have
succeeded in compressing a d dimensional floating point vector,
which takes up at least 4d bytes assuming single-precision, to only
s bytes. Therefore, the effective compression factor is 4d

s
= 4c.

In the prediction phase, given a query vector w ∈ Rd (the linear
SVM model), we would like to quickly compute the dot-product
over all quantized vectors (videos in repository set). The naïve way
to compute the dot-product between two vectors requires d multi-
plications and additions, but PQ exploits the fact that the vectors in
the repository set have been quantized to achieve fast dot-product
computation. First, the query vector is also split according to the s
subspaces, i.e. w = [wT

1 , w
T
2 , . . . , w

T
s ], where wi ∈ Rc. Then for

each subspace, the dot-product between a subspace of the query
vector (wi) and all codewords in the corresponding codebook of
the subspace (Di) is computed and stored in a lookup table (LUT)
Specifically, L = [DT

1 w1, D
T
2 w2, . . . , D

T
s ws] ∈ R256×s. With

the LUT, computing the dot-product between the query vector and
a quantized vector consists of 1) for each subspace, look up the dot-
product value given qi (the quantized vector’s cluster membership),
and 2) sum up the dot-products from each subspace. For example,
we would compute the dot-product between q andw as follows. Let
L(k, l) denote the element on the k-th row and l-th column of the
LUT. Then the dot product is

∑s
i=1 L(qi+1, i). +1 is required be-

cause cluster membership starts from 0. Therefore, with the LUT,
the complexity of a dot-product drops from O(d) to O(s). We see
that not only does PQ compress the feature representation, but also
the prediction time is decreased.

In practice, codebook learning and quantization are performed
offline, and the prediction step is performed online. To accelerate
the prediction step, the codes for the videos in the search reposi-
tory set are all loaded into memory. This is feasible because PQ
significantly compresses the feature representations.

However, when the amount of videos to be searched becomes
very big, spending O(s) per video may still be too long. [9] pro-
poses to build an inverted index to prune out search candidates
that are highly unlikely to be nearest neighbors. The codewords in
the inverted index are acquired by quantizing with another coarse
codebook learned in the d dimensional space. However, in [9],
the largest d is only 960. This is very small compared to the di-
mensions of our video representations, which can go up to 100,000
dimensions. Therefore, this method may not be applicable in our
scenario, and we tackle this problem from another direction. In-
stead of summing the dot-products for all s subspaces, we propose
to only sum over a dynamically selected set of subspaces.

High Variance Subspaces First
We propose to speed up the dot-product computation process by
only summing the dot-product for selected subspaces. The se-
lected subspaces should be the subspaces which can enable us to
quickly discriminate whether a video could be a top-ranked video
or not. Motivated by KD-Tree-based Approximate Nearest Neigh-
bors [18], which perform KD-tree splits according to dimensions
having larger variance, we only select the subspaces which have
high variance in the dot-product values. The intuition is that these
subspaces provide more information in separating a relevant video
from an irrelevant one. We name this method High Variance Sub-
spaces First (HVSF).

The variance can be efficiently computed on the fly based on the
LUT. For the i-th subspace, let ui(1), ui(2), . . . , ui(256) corre-
spond to the frequency of each codeword occurring in the repos-
itory set, which can be computed offline during the quantization
step. The sum of all frequencies is nc, i.e.

∑256
j=1 ui(j) = nc. We

denote the average dot-product values of the classifier w for sub-
space i as µi =

∑256
j=1(ui(j)L(j, i))/nc. Then the variance for

subspace i is as follows: σ2
i =

∑256
j=1 ui(j) (L(j, i)− µi)

2 /nc.
For the prediction phase of HVSF, there are three main steps.

First, high variance subspaces are selected. Second, we perform
summation of dot products only over the selected subspaces. Fi-
nally, to obtain a more accurate ranked list for the top-ranked videos,
the top scoring videos (2500 in our experiments) are selected and
their exact dot-product (summation over all subspaces) computed.
In the following sections, HVSF hX means that only the top 100

h
%

of the subspaces with higher variance were used for the dot-product
summation.



Stages Query Model Training Prediction Reranking

Stored in memory
(shared by all queries)

1. Background set pair-wise dot-product
matrix (BTB)

2. Background set raw features (B)

1. Quantized features for large video
repository set

(All loaded by previous steps)

Read from disk
1. Example video v.s. background set

dot-product matrix (ETB)
2. Example video raw features (E)

(None)
1. Top-ranked video v.s. background set

dot-product matrix
2. Top-ranked video raw features

Compute on the fly

1. Compute example video pair-wise
dot-product matrix (ETE)

2. Assemble training set dot-product
matrix (FTF )

3. Train SVM model, convert SVM dual
solution to primal solution

4. Quantize SVM model

1. Predict with quantized SVM
model

2. Fuse ranked lists from all features

1. Compute top-ranked video pair-wise
dot-product matrix

2. Assemble top-ranked video aug-
mented training set dot-product ma-
trix

3. Continue to Query Model Training
step 3

Table 1: Overview of memory usage, disk usage and computational tasks of each stage in the online phase of the CBVS system.

2.3 Fast Reranking
Unsupervised reranking of an initial ranked list, which is also

known as pseudo-relevance feedback, has shown to be a promising
method in improving CBVS results, increasing the MAP by at least
1% absolute in TRECVID MED 2014 [30]. Under the assumption
that top-ranked videos in a retrieved ranked list are highly likely to
be correct, the reranking algorithm can obtain more training data
for the query model by treating the top-k-ranked videos as posi-
tive examples. These positive examples are added into the example
video set, and a better query model could be trained with the newly
added positive examples. However, we are not perfectly sure that
the top-k-ranked videos are positives, so they should be treated with
more scrutiny than the user-selected example videos. Also, the top
k videos with slightly lower rank are less likely to be positives than
the higher ranked videos. Therefore, [11] proposed to assign grad-
ually decreasing weights to the loss incurred by the top-k-ranked
videos in the SVM loss function. In our work, we simplified the
reranking method proposed in [30, 11] and arrive at the following
algorithm. Let T be the set of videos already in the training set,
e.g. the background videos and the example videos. Let U be the
set of top-k-ranked videos in the current ranked list. In each iter-
ation, we iterate the following three steps: 1) train a SVM model
using the samples in T ∪U ; 2) fix the SVM model, and select some
pseudo positive samples, calculate their weights, and put them in
U ; 3) adjust threshold so that more samples will be added in U in
the next iteration.

When we fix the SVM model, let rank(v), v ∈ U be the rank of
testing video v in the ranked list. The weights of a video v ∈ U can
be calculated by the following closed-form solution:

lv =

{
1 if rank(v) ≤ p

k−rank(v)+1
k−p

otherwise , ∀v ∈ U , (2)

where p is the pivot. For videos ranked before rank p, their weight
is 1. For videos ranked after the pivot, their weights decrease lin-
early. The weights of videos in the training set T are all 1. A
similar mixture weighting scheme has been shown to be effective
in [11].

When we fix the samples in U , the modified linear SVM loss
function, which re-weights the loss incurred by the videos in U , is
as follows.

min
w,b,ξ

1

2
wTw + C

∑
v∈T

ξv + C
∑
v∈U

lvξv

s.t. ∀v ∈ (T ∪ U), yv(wTxv + b) ≥ 1− ξv, ξv ≥ 0,

(3)

where w is the classifier, b is the bias, ξv is the slack for video v,
C is the cost parameter, and xv and yv are the feature representa-

tions and label for video v respectively. yv = 1 for all videos in
U . Equation 3 can be solved with slight modifications to the SVM
solver [11]. Once a model is trained for each feature, we quantize
the model with our PQ codebooks and run prediction only on the
top 2500 videos to achieve faster reranking.

2.4 Memory and I/O Efficient CBVS System
Careful design is required to implement the aforementioned 3

components in a memory and I/O efficient way. The key to achieve
fast speed is try to offload as much computation as possible to the
offline phase, and also try to load data that is shared across all
queries into memory during the online phase. Our CBVS system
takes these offline-computed data as input:

1. Product quantized feature representations: feature extraction
and quantization are very time consuming and should defi-
nitely be done offline.

2. Background set pair-wise dot-product matrix (BTB): as the
background set is predefined and universal to all queries, the
dot-product matrix of the background set itself can be pre-
computed for each feature representation.

3. Repository set v.s. background set pair-wise dot-product ma-
trix (CTB): as the background set and the repository set is
predefined, the dot-product matrix can also be precomputed.
This is for fast distance matrix building in model training
and reranking, as the video examples and the videos used for
reranking are from the repository set.

Table 1 summarizes the memory, disk access, and required com-
putation of the online phase. The raw features of the videos in the
training set are still necessary for model training, but as the raw fea-
tures of the repository set is too large to fit in memory, the features
of the positive examples are read from disk on the fly. However,
this process is fast as there will not be many positive examples. On
the other hand, the raw features of the background set, which is
shared by all queries and only in the order of thousands of videos,
are stored in memory. Other data that is shared across all queries,
such as the background set distance matrix and quantized features
for the prediction set, are all stored in memory. With this method,
we are able to design an efficient CBVS system.

3. EXPERIMENTS
We tested the accuracy and efficiency of our CBVS system by

following the TRECVID MED data sets and evaluation protocol,
which have been widely used to evaluate CBVS systems. Experi-
ments were performed on MEDTEST13 and MEDTEST14, which
are two standard data sets defined by the organizers of TRECVID
MED. These two data sets contain around 33,000 unconstrained
videos (~1200 hours of video). For both data sets, the data can be



(a) DCNN accuracy and timing with different PQ compressions factors.

(b) DCNN PQ 384 byte representation: accuracy and timing with varying
HVSF factors.

Figure 2: Accuracy and speed trade-off analysis for the DCNN fea-
ture. MAP is computed on MEDTEST14 10Ex. Search time is
computed on Video1M set. Much of the accuracy can still be re-
tained under aggressive PQ compression and HVSF approximation.

split into 3 sets: the positive examples, the background set and the
testing set. The positive examples contain videos corresponding to
different events such as Birthday Party, Performing a Bike Trick
and Rock-climbing. There are two different query settings defined
by the organizers: the 10 exemplar (10Ex) and the 100 exemplar
(100Ex) settings. In the 10Ex (100Ex) setting, 10 (100) positive
example videos are provided to the system. The background set
contains 4992 videos. The positive examples and the background
set combined together form the training set. The testing set con-
tains around 24,000 videos. Query models are trained on the train-
ing set and predicted on the testing set. There are a total of 20
events/queries each for the two data sets. The evaluation metric
used is Mean Average Precision (MAP).

For scalability tests, we also created a Video1M set which con-
tains one million videos. These videos were collected by sampling
one million shots from the MEDTEST14 video collection. Shot-
level labels were not provided by the organizers, so this set is only
used for evaluating the efficiency our CBVS system.

All our experiments were run on a single Intel Xeon E5-2640 @
2.50GHz core. A SSD RAID is utilized to enable fast accessing
of on disk data during the training and reranking steps. We now
present experiments on these data sets and explore the trade-off
points of each component in our CBVS system.

3.1 Fast Query Model Training
The timing of training a SVM query model is measured. We

utilize LIBSVM [3] for solving the dual and LIBLINEAR [7] for
solving the primal. The results are shown in Table 2. Though solv-
ing primal form SVMs are in general faster, when the dimensions
of the features become large, and also when the dot-product matrix

MEDTEST14 20 Events Training Time (ms) SpeedupSVM Primal SVM Dual
10 Ex 11257 ± 615 115 ± 14 98x
100 Ex 11228 ± 716 362 ± 84 31x

Table 2: Training time for one SVM model with varying number of
positives by solving either the primal or dual form on the Improved
Dense Trajectories Fisher Vector feature (110592 dimensions). The
dual form assumes that the dot-product matrix is already computed
offline. Both models assume that the required data is loaded into
memory. 4992 negatives are used for all models.

Original
Feature

Dimensions

Subspace
Dimensions

PQ Subspaces
(Bytes in Rep-

resentation)
DCNN 98304 256 384
MFCC 12288 64 192
Sports 512 2 256
YFCC 640 2 320

Total additions per prediction of video 1152
Total additions with 5x HVSF 230

Table 3: PQ parameters for the DMSY CBVS system. The total
number of PQ subspaces (s) is the total number of additions re-
quired to compute the prediction score for a video.

can be precomputed, solving the dual form is significantly faster.
Once the dual form solution is acquired, we still need to convert
the solution to primal form, which is also fast as shown in Table 5.

3.2 Effective Feature Representations and PQ
with HVSF

The accuracy and speed of the CBVS system relies heavily not
only on the set of features utilized, but also on the compression and
approximation of each feature representation. We explore the trade-
offs of these design decisions in this section. There are two main
kinds of feature representations: low-level features and semantics-
based features. Low-level features are extracted directly from the
visual or audio channels and do not contain semantic information.
Effective low-level visual features include the Improved Dense Tra-
jectories Fisher Vectors (IDT FV, 110592 dimensional) from [27,
4]. Effective low-level audio features include the MFCC (12288
dimensional) [30] features. Semantics-based features are features
derived from the prediction of a set of semantic concept detec-
tors. These detectors take low-level features as input and detect
whether the semantic concept it was trained for exists or not in the
video. Effective semantics-based features include those concept
detectors trained on the Yahoo Flickr Creative Commons (YFCC,
640 dimensional) [24, 30] and Google Sports set (Sports, 512 di-
mensional) [15]. Both YFCC and Sports concept detectors are
trained by a SVM-based self-paced learning pipeline [12] using
IDT FV. On the other hand, the Deep Convolutional Neural Net-
work (DCNN, 98304 dimensional) features from [30, 28] is ac-
tually a hybrid feature, including both low-level neural network
features and semantics-based features corresponding to prediction
scores of object detectors trained on ImageNet [6]. Explicit Fea-
ture Maps were applied to the DCNN and MFCC features. Note
that the dimensions of our features have been slightly enlarged (by
appending zeros) so that they are divisible by 128 for YFCC and
Sports, and divisible by 2048 for IDT FV, DCNN and MFCC. This
is done to conveniently perform PQ with high compression factors.



Figure 3: Reranking performance under different amounts of
reranking iterations on the DMSY + HVSF 5X system.

MAP per Condition [30] DMSY + 5X
HVSF + 1R

Performance
Difference

MEDTEST13 10Ex 0.313 0.280 89.4%
MEDTEST13 100Ex 0.464 0.386 83.1%
MEDTEST14 10Ex 0.285 0.233 81.6%

MEDTEST14 100Ex 0.419 0.326 77.9%
Time per query (ms) 558400 × 12 507.7 1319834%

Table 4: Performance comparison between our DMSY + 5X HVSF
+ 1R system and the state-of-the-art MED system [30]. The break-
down of our system’s timing is shown in Table 5. 12 is multiplied
to the timing of the 10Ex system from [30], because the system
was run on a 12 core machine with 4 K-20 GPUs. This is still an
underestimate as the GPU timings were not taken into account.

Compact representations for each video enable fast search, which
we propose to achieve with PQ compressions and HVSF approxi-
mation. Figure 2 shows the accuracy and speed difference under
different PQ compression and HVSF factors. Even under aggres-
sive compression, the performance of DCNN only drops slightly,
but the speed of search increased by 160x if we compare the search
time of the PQ 24576 byte representation with the 384 byte repre-
sentation + HVSF 5X (only 20% subspaces used). This shows the
effectiveness of PQ compressions and HVSF approximation.

A comprehensive study on the affect of PQ compression on dif-
ferent features is performed. Figure 5 shows the MAP of different
features under varying compression factors. A clear trend is that
the MAP of IDT FV drops as less bytes are used in the feature
representation. If around 1000 bytes are used to represent each
video, the most effective features are DCNN, Sports and YFCC.
This hints at the effectiveness of semantics-based features. There-
fore, to strike a balance between accuracy and efficiency, we utilize
the feature representations and compression parameters shown in
Table 3. All feature representations have been compressed to take
up around 300 bytes per video. The total amount of bytes to rep-
resent a video is around 1KB. We refer to this combination as the
DMSY (DCNN, MFCC, Sports, YFCC) system. As learning fu-
sion weights for each query may be slow, the fusion weights are
universal for all queries and set empirically to be 2, 0.5, 1, 1 for the
DCNN, MFCC, Sports and YFCC features respectively. This sys-
tem will be the basis of further experiments. IDT FV has shown to
perform poorly under high compression factors, so it was not used.

3.3 Reranking
Reranking experiments based on our DMSY system combined

with 5X HVSF (DMSY + HVSF 5X) were performed. Three it-
erations of reranking were performed, where the top 2, 4, and 6

Figure 4: MAP and timing scatter plot of different CBVS systems.
MAP was computed under MEDTEST14 10Ex condition. Timings
were computed from searching the Video1M set. 0R means no
reranking. 1R means one round of reranking.

videos were used for reranking in each iteration respectively. The
pivot value was selected by p =

⌊
k
3

⌋
, where k is the amount of

top-ranked videos used for reranking. The results are shown in
Figure 3. Results show that 1 iteration of reranking already pro-
vides most of the performance gain. More iterations may cause a
performance drop. The main reason is that the MEDTEST13 and
MEDTEST14 data sets only have around 20 positives in the test-
ing set. Therefore, when the top 4 or top 6 videos are selected for
reranking, the likelihood of selecting negative videos increases sig-
nificantly. For a larger data set with more positives, this problem
can potentially be alleviated.

From our previous experiments, we have found that DMSY +
HVSF 5X combined with 1 round of reranking (DMSY + HVSF
5X + 1R for short) achieves high performance. Table 4 compares
DMSY + HVSF 5X + 1R with the MAP of a state-of-the-art sys-
tem [30], which achieved top results in the TRECVID MED 2014
task. Results show that our DMSY + HVSF 5X + 1R system re-
tains 80% of the performance which providing a 13,000 thousand
times speedup. This demonstrates the effectiveness of our proposed
compression, approximation and reranking schemes.

3.4 Searching 1 Million Videos
Armed with an effective and efficient DMSY + HVSF 5X + 1R

system, we tackle the challenge of searching 1 million videos on
1 core in 1 second. Query model training was done under the
MEDTEST14 10Ex condition. The search was performed on the
Video1M set. Qualitative results are shown in Figure 6, and de-
tailed timing results are shown in Table 5. Our system can com-
plete the search in 0.975 seconds, which is one of the best systems
in terms of trade-off between speed and accuracy as shown in Fig-
ure 4. Note that when HVSF 5X is combined with 1 iteration of
reranking, we are able achieve nearly the same performance as the
DMSY system without HVSF, while requiring less time. This in-
dicates that fast reranking could perform error correction and com-
pensate for some of the performance loss caused by approxima-
tions. In terms of timing, as shown in Table 5, not surprisingly the
prediction phase of our system takes the longest time, but with 1
round of reranking, the query model training phase also takes up a
significant portion of the time. In terms of memory usage, the dot-
product matrices, raw features, and quantized features for predic-
tion took 0.37GB, 2.09GB and 1.07GB respectively. The memory
usage was less than 4GB and could potentially run on a laptop.



(a) MEDTEST13 10Ex (b) MEDTEST14 10Ex

(c) MEDTEST13 100Ex (d) MEDTEST14 100Ex

Figure 5: Performance of different feature representations under different PQ compression factors. The representation size corresponds to
the amount of bytes required to encode one video. The performance and representation size of the original features (no PQ) are also shown
in the orange circles.

Figure 6: Qualitative results of retrieval by DMSY + HVSF 5X + 1R system on Video1M set. Due to space limitations only selected queries
are shown.



Timing (ms) First Pass 1 Iteration of Reranking Total
SVM training Convert Dual

Sol. to Primal Prediction Load Top Ranked
Video Data SVM training Convert Dual

Sol. to Primal Prediction

MEDTEST14
10Ex 136.1 ± 24.6 87.9 ± 9.1 17.3 ± 1.3 4.9 ± 4.8 136 ± 33.5 87.5 ± 13 10.4 ± 0.7 507.7 ± 73.1

Video1M 10Ex 128.9 ± 21.3 83 ± 5 380.3 ± 5.7 20.6 ± 9.8 127.7 ± 25.3 85.1 ± 5.7 104.9 ± 17.1 975.3 ± 63.4

Table 5: Timing breakdown for DMSY + HVSF 5X + 1R system for one MEDTEST14 10Ex and Video1M 10Ex query.

4. CONCLUSIONS
We have proposed a system which can search 1 million videos

with 1 core in less than 1 second while retaining 80% of the perfor-
mance of a state-of-the-art CBVS system. This potentially opens
the door to content-based video search on web-scale video repos-
itories. The speed gains in our system mainly come from three
aspects. First, we perform approximations in locations which will
not cause significant change in performance, such as increasing the
PQ compression factor and only computing the dot-products for
PQ subspaces with higher variance. Second, fast reranking can
perform some error correction and compensate for some of the per-
formance loss caused by approximations. Finally, our proposed
system relies on 3 semantics-based features, which enabled us to
significantly lower the amount of bytes required to represent each
video. This may suggest that for the next challenge: searching 1
billion videos, even more compact semantics-based representations
might be a promising solution.
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