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ABSTRACT

Spatial Pyramid Matching (SPM) assumes that the spatial
Bag-of-Words (BoW) representation is independent of data.
However, evidence has shown that the assumption usually
leads to a suboptimal representation. In this paper, we pro-
pose a novel method called Jensen-Shannon (JS) Tiling to
learn the BoW representation from data directly at the BoW
level. The proposed JS Tiling is especially appropriate for
large-scale datasets as it is orders of magnitude faster than
existing methods, but with comparable or even better classi-
fication precision. Experimental results on four benchmarks
including two TRECVID12 datasets validate that JS Tiling
outperforms the SPM and the state-of-the-art methods. The
runtime comparison demonstrates that selecting BoW rep-
resentations by JS Tiling is more than 1,000 times faster
than running classifiers. Besides, JS Tiling is an important
component contributing to CMU Teams’ final submission in
TRECVID 2012 Multimedia Event Detection.

Categories and Subject Descriptors

H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing- Indexing methods; I.2.5 [Artificial
Intelligence]: Learning- Feature Representation learning

General Terms

Algorithms, Measurement, Experimentation

Keywords

Bag of Visual Words, Feature Representation, SPM, Spatial
Pyramid, Jensen-Shannon Tiling, Pooling Method

1. INTRODUCTION
The Spatial Bag-of-Words (BoW) model has proven one

of the most broadly used models in image and video re-
trieval. In this model, an image is geometrically partitioned
into several tiles (or grids) described by histograms of visual
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words. The whole image is then represented by the con-
catenated histograms from all the tiles. A further extension
rendering the approach more robust is the Spatial Pyramid
Matching (SPM) [12]. The SPM assumes that the spatial
BoW representation is independent of data. However, evi-
dence has shown that manually defined representations [24,
21, 7, 30, 13] considering salient spatial layouts outperform
the predefined BoW representation on many problems.

A straightforward solution is to select optimal BoW rep-
resentations in terms of their classification precision on the
validation set. This strategy, however, is computationally
infeasible in practice due to the large search space. Recent-
ly, several approaches have been proposed in order to learn
the representation in a more tractable way [18, 10]. The idea
is to optimize the BoW representation jointly with the sub-
sequent classifier. However, learning the representation on
large-scale datasets is still computationally challenging [10].
Moreover, certain greedy methods have to be employed to
approximate the solution when the dataset becomes larg-
er [10] as the time-consuming classifier training, or equiva-
lently, quadratic programming problem solving, is a part of
the learning process. For example, learning the best repre-
sentation for a large-scale TRECVID video dataset named
Multimedia Event Detection generally takes several weeks
on a single desktop [21]. Therefore, although the existing
methods can yield some improvement over the SPM, the
expensive overhead of learning restricts its applicability in
large-scale problems.

In this paper, we propose a novel method called Jensen-
Shannon (JS) Tiling to learn the spatial BoW representa-
tion from data directly at the BoW level. The proposed
method is well chosen for large-scale datasets as it is order-
s of magnitude faster than the existing methods, but with
comparable or even better performance. Specifically, we call
the way to partition an image/video a tiling which corre-
sponds to a spatial BoW representation. For example, 2× 2
and 4× 4 grids in the SPM are two examples of tilings. As
shown in Fig. 1, JS Tiling takes the visual words extracted
from the raw images/videos as the input and outputs the
learned tiling. JS Tiling consists of two steps. First it sys-
tematically generates all possible tilings from a base mask.
For example, all tilings in Fig. 1 are example tilings derived
from 4 × 4 grids by combining the tiles in it. Second, the
generated tilings are evaluated by a proxy based on the JS
divergence, which estimates the divergence between the av-
erage positive and negative word distribution generated by
the tiling. Note, as in existing methods, the feature extrac-
tion and coding need to be conducted only once. The over-
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Figure 1: The pipeline of image/video classification with the proposed JS Tiling. Each rectangle corresponds
to a tiling and the number below denotes the fitness score.

head of learning representations depends on the complexity
of the learning algorithm.

Compared with existing methods [8, 10, 18], the proposed
JS Tiling is orders of magnitude faster because the fitness of
the BoW representation is directly captured at lower BoW
level, independent of the subsequent classifier. The complex-
ity of evaluating a tiling on the pre-computed histograms
is independent of the size of dataset rendering it appropri-
ate for large-scale datasets. Theoretically we prove that the
negative JS divergence of BoW distributions is approximate-
ly the upper bound of the training error of a weighted K-
Nearest Neighbor (K-NN) classifier. Therefore, while min-
imizing the negative JS divergence, the training error of a
weighted K-NN classifier tends to be also minimized. The
result is important because it connects a divergence at the
lower level of BoW to the training error of a weighted K-NN
classifier at higher recognition level, and provides a justifica-
tion why the computationally inexpensive divergence can be
a proxy to the computationally expensive classifier. In addi-
tion, as learning the representation in JS Tiling is indepen-
dent of learning the subsequent classifier, the learned spatial
BoW representation can be expected to be discriminative in
general and not tuned to a specific type of predictive model.

Experimental results demonstrate that selecting the BoW
representation by the proposed JS Tiling is more than 1,000
times faster than running classifiers. JS Tiling consistently
outperforms the SPM on four diverse datasets on scene/object
recognition and event detection. With the help of the learned
BoW representation, we are able to achieve state-of-the-
art performance across datasets, including two challenging
TRECVID datasets. Besides, JS Tiling is an important
component contributing to CMU Teams’ final submission
in TRECVID 2012 Multimedia Event Detection [21, 29]. In
summary, the contribution of this paper is twofold:

• We formulate spatial tiling generation as a set parti-
tion problem and provide an algorithm to generate all
possible tilings from a given mask.

• This paper is a first attempt to evaluate the spatial
BoW representation directly at the lower BoW level.
Theoretically we justify the JS divergence by proving
that the negative JS divergence of BoW distributions
is approximately the upper bound of the training error
of a weighted K-Nearest Neighbor classifier.

2. RELATED WORK
Evidence has shown that the manually designed repre-

sentations generally outperform predefined BoW represen-
tations in many problems. For example, Viitaniemi et al.
observed that manually designed tilings achieve reasonable
improvement over the SPM on the Pascal VOC dataset [24].
Similar observations have been confirmed on other datasets.
Zhang et al. found that the manually designed spatial BoWs
representation is more effective than the SPM for surveil-
lance event detection [30]. Tong et al. confirmed the same
observation on the multimedia event detection task [21].

Recently, several approaches have been proposed to auto-
matically learn an optimal representation from data. The
idea is to find a function or operator that produces informa-
tive statistics in a specific spatial area. For example, Feng et
al. proposed a geometric lp-norm pooling that finds the op-
erator by preserving the geometric information [8]. Jia et al.
focused on finding the spatial regions called receptive field-
s [10]. The method can be regarded as a embedded feature
selection method which learns optimal receptive fields joint-
ly with the subsequent classifier. Sharma et al. proposed
to learn the region on a coarse level [18], where the image
is recursively split into the finer grids, and the problem is
modeled using quadratic programming and solved jointly
with the SVM classifier. As training a classifier is a part
of learning, these methods are orders of magnitude slower
than the proposed method. Therefore, although the above
pooling method can yield some improvement over the SPM,
the expensive overhead of learning restricts its applicability
in many large-scale problems.

3. PROBLEM FORMULATION
One can imagine the problem as an analogy to a bathroom

floor tiling problem, where the task is to find different ways
to tile the image (floor) with different styles of tiles (mosaic-
s). An arrangement of the tiles is called a tiling (or spatial
tiling) which corresponds to a spatial BoW representation.
We define the floor as the mask from which more tilings can
be derived by combining the tiles in it. Formally, a mask
is defined as a tuple of n tiles S = (t1, ..., tn) with each tile
ti covering a non-overlapping area. A mask is a tiling and
any tiling can be a mask. Fig. 2 illustrates several exam-
ple masks. Non-rectangular masks may not be better than
rectangular masks and the introduction of non-rectangular
masks is only to expand the tiling search space.

Each tile in the mask is associated with an ID indicating
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Figure 2: Examples of the different types of masks.

its geometrical location on the mask, e.g. see the numbers in
the tiles in Fig. 3. Tiles in a mask can be combined to form
a bigger tile. Following the adjacency constraint in [8], we
require that a tile can only be combined from adjacent tiles
in the mask. Formally given a mask S, two tiles ti, tj ∈ S
are adjacent if they share at least a common edge. A set of
tiles U is called an adjacent set if it either contains a single
tile or ∃ti, tj ∈ U(tj 6= ti) such that ti and tj are adjacent
and (U\ti) is an adjacent set. For example, in Fig. 3(c)
{t3, t5, t6} is an adjacent set whereas {t1, t2, t9} is not. From
the graph perspective, adjacent tile sets are identical to the
connected components in the graph where the node is the
tile and the edge indicates the two tiles are adjacent. If we
regard a mask as a set and its tiles as the elements in the
set, we can model a tiling as a set partition over the mask
with the adjacency constraint. Formally we have:

Definition 1 (Tiling). A tiling is a mapping Tκ(S) =
S′, denoted by κ = 〈κ1, ..., κ|S|〉, from a source mask S =
(ti) to a target mask S′ = (t′j), such that t′j = {ti|κi =
(j − 1), κi ∈ Z}. Z is the set of integers. A valid tiling Tκ

satisfies:

1. κ = {i ∈ [2, n], κi ∈ Z, κ1 ≤ κi ≤ max1≤j<i κj + 1};

2. ∀j ∈ [1, |S′|], t′j is an adjacent set.

The first condition in Definition 1 is inherited from the set
partition theory [16, 20], which requires the target mask
to be fully covered by non-overlapping tiles. The second
condition indicates that every tile in the target mask should
be adjacent. Given a source mask, a tiling is represented by
a vector κ, also known as codewords in [6], each dimension
indicating the tile’s membership in the target mask.

Fig. 3 illustrates some examples of tilings derived from a
3 × 3 rectangle mask, where each numbered region ti is a
tile in the source mask and the regions with the same color
constitute a tile in the target mask t′i. For example, the car-
nation tile in Fig. 3(a) consists of four tiles 3,5,6 and 9 (i.e.
t′2 = {t3, t5, t6, t9}) as in the tiling κ = 〈 0,0,1,2,1,1,2,2,1〉 the
third, fifth, sixth and ninth dimension share the same mem-
bership 1. Fig. 3(c) is not a valid tiling as t′ = {t1, t2, t9} is
not an adjacent set. Particularly if every tile in the target
mask comprises of the same number of tiles, i.e. ∀ti, tj ∈
S′, |ti| = |tj |, we call Tκ an equal tiling. For example,
Fig. 3(b) is an equal tiling and most of the tilings used in the
literature are equal tilings [12, 21]. The word tiling refers to
the tiling operator Tκ in Definition 1, and, without causing
ambiguity, given a source mask S it also refers to the spatial
representation in the target mask Tκ(S).

Based on the above definition, we can summarize the spa-
tial tiling learning problem as: given a mask S, find an op-
timal tiling Tκ

∗ such that

T ∗
κ = argmin

T̃κ

cost(T̃κ), (1)

where the cost function is calculated from a certain evalua-
tion criterion as introduced in the next section.
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Figure 3: Examples of valid and invalid tilings de-
rived from a 3 × 3 rectangle mask. The tiles in the
mask are numbered by their IDs and the color indi-
cates the membership for each tile after tiling.

4. SPATIAL TILING
To tackle the above problem, we discuss solutions to the

following sub-problems: how to explore the tiling search spa-
ce and given a tiling how to efficiently evaluate its cost.

4.1 Tiling Function Domain
Generally, the spatial tiling learning problem is a NP-Hard

problem and identical to the set partition problem [20] if
the adjacency criterion in Definition 1 is ignored. However,
the problem is still tractable given the reasonable masks
including the commonly used masks in the literature [12, 24,
30, 21]. The numbers of all possible set partitions, tilings
and equal tilings on different masks are listed in Table 1,
where the Parameter column lists the parameters used in
generating the masks1, e.g. Rectangle 4 × 4 corresponds
the mask in Fig. 2(a). As we see, the adjacency constraint
significantly reduces the search space. For example, a 4 × 4
rectangle mask has around 1.6 million tilings but only 255
equal tilings, in contrast with 10.4 billion set partitions.

Type Parameter #Set Partition #Tiling #Equal Tiling

Rectangle 2× 2 15 12 4
Rectangle 3× 3 21147 1434 12
Rectangle 4× 4 10480142147 1691690 225
Diamond 1× 1 15 12 4
Diamond 2× 2 52 16 2
Diamond 3× 3 4213597 17326 23
Hexagon 1 52 20 2
Hexagon 1.5 4140 466 7
Ellipse 4 4140 344 5
Ellipse 8 4213597 5504 10

Table 1: The number of all possible set partitions,
tilings and equal tilings on different types of masks.
All tilings are available at [1].

To explore the search space, inspired by the algorithm
proposed in [6, 16], we introduce Algorithm 1 to generate
all tilings in Table 1. Note that given a mask, the tilings on-
ly needs to be generated once and the pre-generated tilings
can be reused on different datasets. In Algorithm 1, a tiling
is represented by a vector κ and m is an auxiliary vector.
Having initialized κ and the auxiliary vector, in Step 5, the
algorithm invokes the function nextPartition to find the next
set partition and checks whether κ obeys the adjacent crite-
rion via Step 6 to Step 8. Note that the adjacent criterion
checker in Step 6 can be implemented as a simple recursive
connected component traverse subroutine. The source code
of Algorithm 1 and the pre-generated tilings in Table 1 are
available at [1].

1Detailed information about the mask parameters is at [1]



Algorithm 1: Tiling generation algorithm

input : A mask S and let n = |S|.
output: All possible tilings Tκ in the result set.

1 for i = 1 to n do
2 mi = κi = 0; // Initialization

3 end
4 do
5 κ = nextPartition(κ, m);
6 if Tκ(S) are adjacent sets then
7 Add Tκ to the result set;
8 end
9 while κ 6= null ;

// Start the subroutine

10 nextPartition ← function(κ, m)
11 for i = n to 2 do
12 if κi ≤ mi−1 then
13 κi ← κi + 1; mi ← max(κi,mi);
14 if i + 1 ≤ n then
15 for j = i+ 1 to n do
16 κj ← κ1; mj ← mi;
17 end
18 end
19 return κ;
20 end
21 end
22 return null ;

4.2 Cost Function
Consider a binary classification scenario, where xi rep-

resents the ith sample in the training set with the label
yi ∈ {−1,+1}. In the spatial BoW representation, a sample
is a concatenation of histograms of all tiles in the mask. In
each tile, the histogram is represented by the visual words
geographically located in the area, denoted by xj

i (k), where
i indexes the sample, j indexes the tile and k indexes the
dimension of the histogram. For the jth tile in the mask,
define its positive and negative histogram as the average
histogram of all positive and negative samples, respectively,

Hj
+ =

1

n+

∑

yi=+1

(xj
i + α), (2)

where n+ denotes the total number of positive samples.
While counting the word frequency, we add the Laplace
smoother with α = 1 to avoid the underflow. Define Dj

+

as the corresponding (L1 normalized) word distribution of
the histogram Hj

+, i.e. D
j
+ = Hj

+/ ‖Hj
+‖1.

An optimal spatial BoW representation tends to separate
the positive and negative samples with the maximum dis-
tance [3]. In this paper, the distance is derived from the
Kullback-Leibler (KL) divergence between the average word
distribution of positive and negative samples:

KL(Dj
+ ‖ Dj

−) =

|V |∑

k=1

Dj
+(k) log

Dj
+(k)

Dj
−(k)

, (3)

where |V | represents the size of the dictionary. Since the
distance is required to be symmetric, we use the Jensen-
Shannon (JS) divergence:

JS(Dj
+‖D

j
−) =

1

2
KL(Dj

+‖
Dj

++D
j
−

2
) +

1

2
KL(Dj

−‖
Dj

++D
j
−

2
). (4)

Based on the JS divergence we propose the following cost
function for a given mask S:

cost(Tκ) = λ|Tκ(S)| −

|Tκ(S)|−1∑

j=0

JS(Dj
+ ‖ Dj

−)

|Tκ(S)|
, (5)

where |Tκ(S)| indicates the number of tiles after tiling and
λ is a parameter. The second term in Eq. (5) measures the
average distance between the positive and the negative word
distributions. The first term serves as a regularization term
that controls the complexity to avoid overfitting. Therefore,
the cost function trades off the model fitness against the
model complexity. Given a tiling, the computational com-
plexity of Eq. (5) is O(NM), where N and M denote the
number of samples and the dimension of the histogram, re-
spectively. The complexity can be further reduced to O(M)
if the histogram of every tile in the mask is pre-calculated.
Since the dimension M is usually a small constant, selecting
optimal BoW representations by Eq. (5) is orders of mag-
nitude faster than by running classifiers, the complexity of
which is generally O(MN2).

Eq. (5) may not be the optimal proxy for this problem
but it offers an efficient and reasonably accurate approach
to evaluate BoW representations. Experimental results in
Section 5.5 substantiates this argument. JS is a broadly
used metric in information retrieval but has not been used
to evaluate the spatial BoW representation. Measuring the
BoW representation by JS is consistent with the distribu-
tion separability principle in [3]. If the histogram is L1 nor-
malized, we prove that the negative JS divergence in the
second term of Eq. (5) is an upper bound of the training er-
ror of a weighted K-Nearest Neighbor classifier K = N (see
Appendix). Since K is large, the proxy is expected to be ro-
bust across datasets. The experimental results substantiate
this argument. Our finding is important because it estab-
lishes a connection between a divergence working at lower
BoW level and the training error of a classifier at higher
recognition level, and provides a justification why the com-
putationally inexpensive divergence can be a proxy to the
computationally expensive weighted K-NN classifier. In ad-
dition, Eq. (5) can be used to evaluate not only tilings but
also BoW representations in other problems, e.g. to deter-
mine best sliding window size.

If the search space is manageable, such as the search spa-
ce in Table 1, we can exhaustively search the optimal tiling
using Eq. (5). When the exhaustive search becomes com-
putationally infeasible, we can apply gradient descent using
the objective function Eq. (5) to find the optimal solution.

5. EXPERIMENTS
In this section, we empirically compare our results with

Spatial Pyramid Matching (SPM) and the state-of-the-art
method on four datasets ranging from a clean dataset to
challenging TRECVID datasets. The datasets are 15-scene
categories [12], Surveillance Event Detection (SED) [17, 30],
Multimedia Event Detection (MED) [21] and Pascal VOC [7].
Experiments are repeated five times with randomly gener-
ated training and test samples. In each run, the samples
are partitioned approximately equally into the training and
test set. A standard LibSVM classifier [4] with a χ2 kernel
is used and the multi-class classification is conducted using
the one-versus-all strategy. The tilings in Table 1 are includ-
ed as the masks. Since the search space is manageable, we
conduct an exhaustive search with Eq. (5). On each dataset,
the performance is evaluated by the common metric used on
the dataset and the Mean Average Precision (MAP).

5.1 15-Scene Categories
The 15-scene dataset consists of 4,485 scene images from



L
Spatial Pyramid Rectangle Masks All Masks

Accuracy MAP Accuracy MAP Accuracy MAP

0 75.3±0.3 81.5±0.6 80.4±0.7 83.2±0.6 82.4±0.4 85.5±0.4
1 80.7±0.6 83.3±0.6 80.8±0.5 83.6±0.6 82.2±0.5 85.4±0.4
2 80.8±0.6 83.5±0.5 81.4±0.6 84.1±0.6 82.7±0.6 85.8±0.4
3 80.1±0.6 82.4±0.5 81.5±0.6 84.1±0.7 82.8±0.5 85.8±0.4
4 79.2±0.6 81.2±0.6 81.7±0.6 84.2±0.6 83.5±0.7 86.7±0.5
7 - - 81.9±0.5 84.6±0.5 85.3±0.4 88.0±0.3

Table 3: Comparison of the tiling fusion results on
15-scene. The first column is the level in SPM.

15 categories. Following the setting in [12], we extract dense
SIFT with the vocabulary size |V | = 1024 and use randomly
selected 100 images as the training samples. First we com-
pare the learned tilings with the predefined tilings used in
Spatial Pyramid Matching (SPM). Table 2 lists the com-
parison result. The “Predefined Masks” column shows the
performance of the top 5 best predefined tilings. The tilings
in the “Rectangle Mask” column are learned on the rectan-
gle masks. The “All Masks” column further includes tilings
learned on non-rectangular masks. As we see, the learned
tilings consistently outperform the predefined tilings.

Then we compare the fusion of the learned tilings with
the SPM at different levels, as shown in Table 3. The first
column indicates the level in the SPM. To be consistent,
we fuse L + 1 learned tilings at level L. The tilings in the
“Rectangle Mask”column are learned on the rectangle masks
whereas the tilings in the“All Masks” column are learned on
all masks. As the tiling fusion is beyond the topic of this
paper, we gradually fuse tilings in descending order of their
performance on the development set. As we see, the SPM
underperforms the fusion of learned tilings on both rectangle
and all masks. The result indicates that the BoW represen-
tation in the SPM is suboptimal and can be further improved
by salient tilings learned from data. A notable observation is
that the performance of SPM decreases when L grows larger
than 2 due to the lack of remaining salient tilings. Howev-
er, the performance of learned tilings keeps increasing along
with the level L before reaching its saturation point.

Table 4 lists the performance comparison with state-of-
the-art methods on the dataset. For a fair comparison, we
cite the score with the same vocabulary size 1024 in [2]. We
report our best fusion result of the learned tilings in Table 3.
As we see, the proposed JS Tiling achieves the highest scores.
For example, it improves the accuracy of the SPM by an
absolute 4.5%. It also obtains reasonable improvements over
the state-of-the-art methods. For example, it improves the
MAP of the best baseline [19] by an absolute 2.5%.

5.2 Surveillance Event Detection (SED)
The TRECVID SED [17] dataset consists of 143 hours of

surveillance video recorded in London Gatwick Airport cap-
tured by five cameras. The task is to detect seven events
such as “PersonRuns”, “ObjectPut” and “PeopleMeet”. Fol-
lowing the setting in [30] we extract the MoSIFT (Motion
SIFT) [5] feature on the 2011 development set with the vo-
cabulary size |V | = 4096. We randomly sample some non-
event examples as the negative samples using a sliding win-
dow of 60 frames. The standard metric Minimum DCR (De-
tection Cost Rate) [17] is used and averaged across 7 events.
The smaller Minimum DCR is, the better the method and
the perfect method has zero Minimum DCR.

Table 5 presents the comparison between the SPM and
the fusion of learned tilings at different levels. We observe

Dataset Method MAP Accuracy

15-Scene

SPM [12] 83.5±0.5 80.8±0.6
Boureau et al. [2] - 84.9±0.3
Sharma et al. [19] 85.5±0.7 -
van Gemert et al. [23] - 76.7±0.4
Sharma et al. [18] - 81.2±0.6
Yang et al. [27] - 80.3±0.9
JS Tiling 88.0±0.3 85.3±0.4

Method MAP Min DCR

SED
SPM [12] 22.8±1.0 89.0±1.5
Winner’11 [30] 23.8±0.8 87.2±1.0
JS Tiling 26.5±0.6 85.1±0.9

Method MAP(SIFT) MAP(STIP)

MED
SPM [12] 26.8 17.2
Winner’12 [29, 21] 27.3 18.7
JS Tiling 30.7 21.2

Method MAP -

VOC

SPM [12] 52.5 -
Winner’07 [15] 54.2 -
Wang et al. [26] 55.1 -
Yang et al. [28] 59.6 -
JS Tiling 55.5 -

Table 4: Performance comparison with state-of-the-
art methods. The proposed JS Tiling exhibits the
best performance on 3 out of 4 datasets. Min DCR is
Minimum DCR (the lower the better). MAP(SIFT)
and MAP(STIP) indicates the MAP using the SIFT
and STIP feature, respectively. “-”denotes the num-
ber is unavailable on the dataset.

a similar pattern that the fusion of learned tilings outper-
forms the SPM at all levels. For example, the proposed JS
Tiling improves the MAP of the SPM by 10.7% using four
tilings (at L = 3) in terms of the MAP. We also compare
our best result with the best system in TRECVID 2011 in-
dicated as Winner’11. We conduct experiments using the
Winner’11 system [30] and report the performance in Ta-
ble 4. As we see, JS Tiling improves Winner’11’s MAP by
a relative 11.3%.

Because of the fixed camera, it is more illustrative to ana-
lyze the learned tilings on this dataset. Fig. 4 illustrates the
comparison of the best predefined tiling in the SPM with
the best learned tiling for two cameras. The heat map plots
the distribution of manually annotated bounding boxes of
the event in the video. Since localizing events on the whole
collection involves a considerable amount of labor, we on-
ly annotated two representative events: “PersonRun” and
“ObjectPut”. The tilings are automatically learned without
using the bounding box information. As shown in Fig. 4,
the learned tilings seem to be more sensible than the prede-
fined tilings used in the SPM. For example, in Camera 1 (the
top part of Fig. 4), the best predefined 2× 2 grids intersect
the hot region and divide it into four pieces. However, the
learned tiling preserves the hot region by merging the tiles
around the center. Similarly, the learned tiling in Camera 5
separates the 3 lanes in the airport and tries to preserve the
hot region in the middle strip of the video. As the tilings
are learned on a coarse-level (tiles), its representation is re-
stricted by the tiles in the mask and thus may not perfectly
separate the hot region.

5.3 Multimedia Event Detection (MED)
Our third dataset is the TRECVID MED12 development

dataset consisting of the MED12 DEV (2,000 videos) and
MED11 DEV-T set (9,746 videos) [21, 29, 9]. The task is
to retrieve a ranked list of relevant videos for events such as
“Birthday Party” and “Parkour”. There are a total of 4,058



Rank Predefined Masks Rectangle Masks All Masks
Tiling Accuracy MAP Tiling Accuracy MAP Tiling Accuracy MAP

1 79.5±0.7 81.5±0.6 80.4±0.7 83.2±0.6 82.4±0.4 85.5±0.4

2 79.4±0.6 81.8±0.6 80.4±0.4 83.0±0.6 81.4±0.4 84.3±0.5

3 78.6±0.4 80.7±0.4 80.0±0.6 82.4±0.5 80.8±0.5 83.7±0.5

4 77.5±0.2 80.3±0.4 79.9±0.5 82.1±0.7 80.9±0.3 82.5±0.4

5 77.8±0.5 79.6±0.5 79.5±0.7 81.5±0.6 80.4±0.7 83.2±0.6

Table 2: Performance comparison of the best predefined and the best learned tilings on 15-scene categories.
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Figure 4: Comparison of the best predefined and
learned tilings on Camera 1 (top) and Camera 5
(bottom). The heat map plots the distribution of
manually annotated bounding boxes.

L
Spatial Pyramid Rectangle Masks All Masks

Min DCR MAP Min DCR MAP Min DCR MAP

0 90.1±1.6 22.7±0.9 88.4±1.5 23.5±1.2 87.8±1.3 24.2±1.0
1 89.8±1.2 23.3±0.7 87.7±1.0 24.1±0.8 87.6±1.1 23.7±0.6
2 89.2±1.5 23.2±1.0 87.2±1.0 23.8±0.8 86.8±0.9 24.7±0.7
3 89.0±1.5 22.8±1.0 87.1±0.9 24.3±0.8 86.0±0.9 25.1±0.6
6 - - 87.3±0.9 24.5±0.7 85.1±0.9 26.5±0.6

Table 5: Comparison of the tiling fusion results on
SED. The first column is #tilings used in the fusion.
Min DCR denotes Minimum DCR.

positive videos for the 25 events (E001-E015 and E021-E030)
and the remaining 7,688 videos are background videos which
do not belong to any of the 25 events. Following the setting
in [11, 29], we extract the static image descriptor SIFT [14]
and the motion descriptor STIP [25] with the vocabulary
size |V | = 4096. Table 4 presents the comparison with the
baseline method. Winner’12 in Table 4 indicates the best
system [21, 29] in the TRECVID 2012 contest according
to [17]. We conduct experiments using the system in [29]
and report its MAP in the table. Generally, the relative
improvements, in terms of MAP, over the best baseline are
12% using SIFT and 13% using STIP. The experiment shows
that the learned tilings are applicable to both static image
features and motion features. Fig. 5 depicts the comparison
between the Winner’12 on each event. As can be seen, JS
Tiling outperforms the SPM on 21 out of 25 events using
SIFT, and on 23 out of 25 events using STIP.

5.4 Pascal VOC
Following [22], Pascal VOC 2007 is selected as our fourth

dataset. The experiments are conducted on the development
set called “trainval” (5,011 images) provided by the organiz-
er [7]. We extract SIFT feature with the vocabulary size
|V | = 1024 and adopt the standard criterion of interpolated
MAP used in the challenge [7]. Table 6 presents the compar-
ison between the SPM and the fusion of the learned tilings
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Figure 5: Average precision comparison on the
MED dataset. The MAP across events is in Table 4.

L
Spatial Pyramid Rectangle Masks All Masks

MAP MAP MAP

0 49.1±0.2 51.4±0.2 51.4±0.2
1 51.7±0.3 52.8±0.3 52.8±0.2
2 52.5±0.3 53.0±0.2 53.0±0.3
3 52.4±0.3 53.6±0.3 53.6±0.4
4 51.6±0.4 53.7±0.4 54.5±0.3
6 - 54.3±0.3 55.3±0.3

Table 6: Comparison of the tiling fusion results on
Pascal VOC.

at different levels. As on other datasets, we can observe a
similar pattern in which the fusion of learned tilings consis-
tently outperform the SPM across levels. Table 4 presents
the comparison with the baseline methods. Note the MAP
of all methods in the table are obtained on the same develop-
ment set “trainval” and Winner’07 denotes the best system
in VOC 2007 contest [15]. As we see, JS Tiling improves SP-
M by a relative 5.3%. Though it is the second best method
in the table, it still shows evident improvement over the SP-
M. The best method [28] optimizes the coding dictionary,
which is a different optimization direction from this paper.
We hypothesize that our performance can be further im-
proved using the better dictionary in [28].

5.5 Efficacy and Efficiency of JS Tiling
To verify the efficacy of Eq. (5), we compare the cost esti-

mated by Eq. (5) with the true classification MAP of a SVM
classifier with a χ2 kernel. Since running classifiers is time



consuming, the experiments are conducted on a tractable
mask i.e. a 3 × 3 rectangle mask including 12 equal tilings.
Fig. 6 shows the comparison result, where the x-axis rep-
resents the tiling’s fitness estimated by Eq. (5); the fitness
is derived from 1 − cost in Eq. (5) and is normalized into
[0, 1]; the y-axis is the tiling’s true MAP of the SVM clas-
sifier. The Pearson correlation coefficient of the two values
is listed in parentheses under each figure. We can observe a
strong correlation between the estimated fitness and the true
MAP, with an average coefficient of 0.88 across four datasets.
This observation substantiates the hypothesis that Eq. (5)
is a reasonably accurate cost function.
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Figure 6: Classification MAP versus estimated fit-
ness. Fitness is derived from 1 − cost in Eq. (5) and
normalized to [0, 1]. Pearson correlation coefficients
are listed in parentheses under each figure.

To study the sensitivity of the parameter λ in Eq. (5)
on the classification MAP, we tune λ on the equal tilings
generated by a 3×3 rectangle mask. Fig. 7 illustrates the
result where the x-axis represents the value of λ and the y-
axis is the MAP of the learned tiling. As we see, the MAP
is less sensitive to the change of λ, and the performance
remains the same in the range of 0.1 to 0.2 across datasets.

To verify the efficiency, we compare the runtime of search-
ing the optimal tiling on all (equal and unequal) tilings gen-
erated by a 3×3 rectangle mask using Eq. (5), a linear SVM
(including the time for explicit feature mapping), and a SVM
with χ2. The experiments are conducted on a single core In-
tel Core i7 CPU@2.8GHz with 4G memory. The search spa-
ce contains 1,434 tilings. The runtime in Table 7 is extrap-
olated by the runtime on a subspace containing 30 tilings.
As we see in Table 7, learning tilings by Eq. (5) is orders of
magnitude faster than by kernel and linear SVM. Since the
space in the experiment is still very small, in practice, it is
computationally infeasible to evaluate tilings with an SVM
classifier. The observation confirms the theoretical complex-
ity analysis in Section 4.2 and substantiates the efficiency of
the proposed cost function.

6. CONCLUSIONS AND FUTURE WORK
We proposed a novel method called JS Tiling to learn

the BoW representation for large-scale datasets directly at

Dataset JS Tiling Linear SVM Kernel SVM

15-scene 1.1(h) 1,314(h) 10,874(h)
SED 2.1(h) 2,629(h) 32,862(h)
MED 2.3(h) 4,541(h) 41,825(h)
Pascal VOC 1.6(h) 1,912(h) 22,346(h)

Table 7: Runtime comparison of the tiling search (in
hours) on the 3×3 rectangle mask.
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Figure 7: The impact of the regularization term λ
in Eq. (5) on the classification MAP.

the BoW level. JS Tiling offers an approach to design sal-
ient spatial BoW representations. The experimental results
on four diverse datasets demonstrate that the proposed JS
Tiling outperforms spatial pyramid matching and state-of-
the-art methods. The runtime comparison further demon-
strates that JS Tiling is very efficient and its overhead time
of learning tilings is 1,000 times less than that of a conven-
tional method that selects optimal representations by run-
ning classifiers.

Empirically, we observed that small tiles that cover a very
small area may underestimate the real cost. Because small
tiles usually contain a few interest points, and thus are rep-
resented by non-smooth BoW distributions. This problem
is mainly a result from the “sampling bias” in the cost func-
tion. We plan to study smoothing methods to overcome this
issue in future.
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APPENDIX
Lemma 1. Suppose for each tile, its histogram is L1 nor-

malized i.e. ∀k, Dk
+ = Hk

+, Dk
− = Hk

−. There are |Tκ(S)|
tiles in the final representation. The negative JS divergence
is approximately the upper bound of the training error of a
weighted K Nearest Neighbor classifier, i.e.

−

|Tκ(S)|−1∑

k=0

JS(D+
k ‖D

−
k ) ≥

1

8δ

∑

i

(−yiŷi)+O(‖ Dk
+−Dk

− ‖
3
3) (6)

where ŷi =
∑

j yj(
xi
δi

)T
xj
δj

calculates the estimated label for the

ith sample. δ is a positive constant. O(‖ Dk
+ −Dk

− ‖
3
3) is the

higher order polynomials in Taylor’s series. An alternative
form of the training error is given by Eq. (17).

Proof. Expand log a at the point b by Taylor’s theorem:

log a− log b = (a− b)
1

b
−

1

2b2
(a− b)2 +

1

6ǫ3
(a − b)3 (7)

where ǫ is a constant between a and b. According to the
definition in Eq. (4).

JS(x ‖ y) =
1

2

|V |∑

t=1

x(t) log
2x(t)

x(t) + y(t)
+ y(t) log

2y(t)

x(t) + y(t)
(8)

Substitute Eq. (7) into Eq. (8), we have:

JS(x ‖ y) =

|V |∑

t=1

[x(t)− y(t)]2

4[x(t) + y(t)]
+

1

12
[x(t)− y(t)]

3
(
x(t)

ǫ31
−

y(t)

ǫ32
) (9)

According Eq. (2), x(t) and y(t) corresponds a dimension in
the BoW distribution after Laplace (adding α) smoothing.
We have ∀t, 0 < δ ≤ x(t), y(t) < 1, where δ is a positive
constant. According to Taylor’s theorem, δ < ǫ1, ǫ2 < 1.
Since x(t) + y(t) ≥ 2δ, we have

JS(x ‖ y) ≤
‖ x− y ‖22

8δ
+
‖ x− y ‖33

12δ3
. (10)

The second term is the higher order polynomials in Taylor’s
series which can be represented as O(‖ x− y ‖33).

For the kth tile in the mask Tκ(S), we have:

‖ Hk
+ −Hk

− ‖
2
2=

|V |∑
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(
∑

yi=+1

xk
i (t)

n+
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|V |∑
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(
∑

yj=−1

xk
j (t)
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)2 − 2

|V |∑
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(
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xk
i (t)

n+
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j (t)

n−
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(11)

Note that, using the dot product trick, we have:

|V |∑
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(
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and
|Tκ(S)|−1∑

k=0

(xk
i )

Txk
j = (xi)

Txj (13)

Let δi denote an indicator function which equals n+ when
yi = +1 and n− when yi = −1. Based on Eq. (12) and
Eq. (13), we can rewrite Eq. (11) as

|Tκ(S)|−1∑

k=0

‖ H
k
+ −H

k
− ‖

2
2=

∑

i,j

(yiyj)(
xi

δi
)
T xj

δj
(14)

Substitute Eq. (14) back into Eq. (10), we have:

−
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Let ŷi =
∑

j yj(
xi
δi

)T
xj
δj

and using the condition ∀k, Dk = Hk

−
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JS(Dk
+ ‖D

k
−) ≥

1

8δ

∑

i
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To make it clearer, plus a constant (n+ +n−)/8δ on the both
sides we have:

1

8δ
(n+ + n−)−

|Tκ(S)|−1∑

k=0

JS(D+
k ‖D

−
k )

≥
1

8δ

∑

i

(1− yiŷi) + O(‖ Dk

+ −Dk

− ‖
3
3)

(17)

where ŷi calculates the label for ith training sample accord-
ing to all of samples in the dataset. The right-hand side term
of Eq. (16) calculates the training error for the ith sample by
a linear loss function. Therefore the negative JS divergence
is the upper bound of the training error of a weighted K-NN
classifier when K = n+ + n−.


