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ABSTRACT

We propose a novel method MultiModal Pseudo Relevance
Feedback (MMPRF) for event search in video, which re-
quires no search examples from the user. Pseudo Relevance
Feedback has shown great potential in retrieval tasks, but
previous works are limited to unimodal tasks with only a
single ranked list. To tackle the event search task which
is inherently multimodal, our proposed MMPRF' takes ad-
vantage of multiple modalities and multiple ranked lists to
enhance event search performance in a principled way. The
approach is unique in that it leverages not only semantic
features, but also non-semantic low-level features for event
search in the absence of training data. Evaluated on the
TRECVID MEDTest dataset, the approach improves the
baseline by up to 158% in terms of the mean average preci-
sion. It also significantly contributes to CMU Team’s final
submission in TRECVID-13 Multimedia Event Detection.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Retrieval
Models; H.4 [Information Systems Applications]: Mis-
cellaneous

General Terms
Algorithms, Experimentation, Performance
Keywords

MultiModal Pseudo Relevance Feedback, PRF, Multimedia
Event Detection, MED, Zero-Example, 0Ex

1. INTRODUCTION

The Internet has witnessed an explosion of multimedia
contents, which are being produced and shared in an un-
precedented pace. To manage and use such volume of mul-
timedia content successfully, users need to be able to conduct
semantic search over the multimedia corpora. To advance
the development of new technologies for content understand-
ing, the TREC Video Retrieval Evaluation (TRECVID) ef-
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fort establishes a representative benchmark called Multime-
dia Event Detection (MED) for event search in video. Its
goal is to detect the occurrence of a main event occurring in
a video clip, e.g. “Birthday party” and “Making a sandwich”.
For each event, NIST releases a text description called the
event kit description, which includes a name, definition, ex-
plication and visual/acoustic evidence that is expected to be
observed in the video (see the left part of Figure 1). MED
is inherently a multimodal task because the ground-truth
evidence comes from multiple modalities.

One setting in MED is Zero-Example (0Ex), where zero
exemplar or relevant videos are given. Since no training data
is provided, the OEx system must solely rely on the input of
the event kit description. The MED OEx is an interesting
task because it mostly resembles a real-world video search
scenario, where users typically search videos by using query
words than by providing example videos. However, it is also
the most challenging in the MED task since the training data
is missing. Generally, a basic 0Ex pipeline consists of the
following stages. The first stage is called query generation,
in which the system converts the input event kit description
into a set of queries [24, 30, 4]. For example, Figure 1 shows
the example query generated from the words in the event
kit description of “Birthday party”. In the second stage, the
system retrieves the ranked list of videos using the query of
each modality [31]. Finally, the ranked lists retrieved from
all modalities are fused together and returned to users [13].

Pseudo Relevance Feedback (PRF) has been proven an ef-
fective approach to improve the search results in the absence
of training data. The idea is to select a few feedback videos,
and assign assumed relevance judgments to them. Since no
ground-truth training data or manual relevance judgment is
used in the assignment, the assumed label is called a “pseudo
label” and the set of feedback videos is named the “pseudo
label set”. The statistics collected on the pseudo label set is
then fed back to improve the original ranked list. Existing
PRF methods are designed to construct the pseudo label set
from a single ranked list, e.g. from the text search [9, 15,
23, 6] or the visual search [28, 5]. Due to the challenge of
multimedia retrieval, features from multiple modalities are
usually used to achieve better performance [20, 8, 24]. How-
ever, performing PRF on multimodal tasks such as event
search is an important yet unaddressed problem. The key
challenge is to jointly derive an optimal pseudo label set from
all the ranked lists. The limitation of existing PRF methods
when applied to multimodal tasks is that previous methods
cannot jointly exploit information from multiple ranked lists
rendering an inconsistent joint model used in the feedback.
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Figure 1: The OEx pipeline with MultiModal Pseudo Relevance Feedback (MMPRF).

In this paper, we introduce a novel method called Mul-
tiModal Pseudo Relevance Feedback (MMPRF) which con-
ducts the feedback jointly on multiple modalities leading to a
consistent and superior joint feedback model. Figure 1 illus-
trates the OEx pipeline with MMPRF, where the input is the
event kit description and the output is a ranked list of videos
satisfying the information need specified in the event kit de-
scription. Specifically, after retrieving the ranked lists from
all modalities, MMPRF constructs the pseudo label set, on
which a joint model is trained using both high-level and low-
level features. Finally, the ranked list produced by the joint
model is fed back to establish the pseudo label set for the
next iteration. The above steps are executed iteratively until
the termination criterion is satisfied. MMPRF utilizes the
ranked lists of all modalities, and combines them in a prin-
cipled approach based on Maximum Likelihood Estimation
(MLE). MMPRF explicitly exploits the joint information re-
siding in multiple modalities, which is usually ignored in the
existing methods. We show in Section 3.4 that MMPRF is a
general method which includes other PRF as special cases,
and the late fusion is a pseudo label set construction method
maximizing the expected value of the pseudo labels.

MMPREF is a first attempt to leverage both high-level and
low-level features for MED without any training data. It
is impossible to use low-level features, such as SIFT, in the
conventional 0Ex system, because, though low-level features
are discriminative, they lack semantic meaning. For exam-
ple, it is impossible to map the text event kit description
to the interest points in SIFT without any training data.
On the other hand, MMPRF circumvents the difficulty of
the mapping by transferring the problem into a supervised
problem on the pseudo label set.

This paper experimentally compares different PRF met-
hods for multimedia event detection. The comparison off-
ers a compelling insight into the behavior of PRF methods
for event search in video. The experimental results on the
TRECVID MEDTest datasets demonstrate the efficacy of
the proposed method. The relative improvements over the
baseline method which is without PRF are 158% on Pre-
Specified events and 107% on Ad-Hoc events, in terms of
Mean Average Precision (MAP). In addition, it outperforms
the state-of-the-art baseline PRF methods, with statistical-
ly significant differences. To the best of our knowledge, the
MAP of zero examples event search reported in this paper is

so far the best result on the TRECVID MEDTest dataset.
MMPREF serves as a crucial component in CMU Team’s fi-
nal system in TRECVID 2013 Multimedia Event Detection
(MED) task [14]. In summary, the technical contribution of
this paper is threefold:

e We introduce a novel pseudo relevance feedback method
on multiple modalities, which includes other PRF met-
hods as special cases.

e This work is a first attempt to leverage both high-level
and low-level features for multimedia event detection
without any training data.

e We formulate the problem of the pseudo label con-
struction as an integer programming problem, and of-
fer an efficient solution by relaxation.

2. RELATED WORK

The initial feedback ranking score in existing Pseudo Rel-
evance Feedback (PRF) methods is obtained from a single
modality. On the text modality, PRF has been extensive-
ly studied. In the vector space model, the Rocchio algo-
rithm [9] is broadly used, where the original query vector
is modified by the vectors of relevant and irrelevant docu-
ments. Since a document’s true relevance judgment is un-
available, the top-ranked and bottom-ranked documents in
the retrieved list are used to approximate the relevant and
irrelevant documents. In the language model, PRF is usu-
ally performed with a Relevance Model (RM) [15, 4, 18].
The idea is to estimate the probability of a word in the rel-
evance model, and feed the probability back to smooth the
query likelihood in the language model. Because the rele-
vance model is unknown, RM also assumes the top-ranked
documents imply the distribution of the unknown relevance
model. Several extensions have been proposed to improve R-
M. For example, instead of using the top-ranked documents,
Lee et al. proposed a cluster-based resampling method to
select better feedback documents [16]. Cao et al. explored
a supervised approach to select good expansion terms based
on a pre-trained classifier [3]. Lv et al. introduced an ad-
ditional random variable to discriminate the importance of
relevant documents at different ranked positions [18].

PRF has also been shown to be effective in image and
video retrieval. Yan et al. proposed a classification-based
PRF [27, 28, 5], where the query image and its most dis-
similar images are used as pseudo samples. The idea is to



train an imbalanced SVM classifier, biased towards negative
pseudo samples, as true negatives are usually much easier to
find. In [6], the pseudo-negatives, sampled from the ranked
list of a text query, are first grouped into several clusters and
the clusters’ conditional probabilities are fed back to alter
the initial ranked list. Similar to [16], the role of clustering
is to reduce the noise in the initial text ranked list. In [17,
23], the authors incorporated pseudo labels into the learning
to rank paradigm. The idea is to learn a ranking function by
optimizing the pair-wise or list-wise orders between pseudo
positive and negative samples. In [19], the relevance judg-
ment over the top-ranked videos is provided by users. Then
an SVM is trained using visual features represented in the
Fisher vector. Because its feedback is provided by users, it
cannot be used in tasks like MED, where the manual inspec-
tion of the search results is prohibited.

3. MMPRF
3.1 Algorithm Overview

First of all, we introduce some notations. Given a query
Qi, let r; denote the ranked list retrieved by the ith modal-
ity. €; represents a distribution over the feedback videos
of the ith modality *. Following [15, 18], we represent Q;
by the top-k*-ranked videos in r;, where k¥ is a parameter
controlling the number of pseudo positive videos (or pseudo-
positives) to be used in the feedback. Similarly, £~ denotes
the number of pseudo negative videos (or pseudo negatives).

Algorithm 1: Overview of MMPRF Algorithm.

input : Input dataset and query;

#+feedback videos kT and k~; Feedback step size n;
output: The final ranked list after the feedback.

1 t=0// Iteration zero

2 do

3 Search a pseudo label set y(*) including k+
pseudo-positives and k~ pseudo-negatives;

4 Training a joint model on y(*) using both high-level

features and low-level features;

Obtain a ranked list r(t)

fusion
(t) _ ot (t) (t=1) |
fusion — Combination of rfusion fusion’

5 by the trained joint model;
6
7 kt =kt +n; kT =k(1+ k%) ; // Increase step size
8
9

r and r

t=t+1;
while t < maz iteration
(t)

fusion;

// Increase the iteration
// Termination criterion;

10 return r

Algorithm 1 summarizes the MMPRF algorithm, where
the superscript ¢ is used to index the iteration. The algo-
rithm starts with searching the pseudo label set y(t) in Step
3. Once the label set is established, it trains a joint model
using both high-level and low-level features in Step 4. Then,
in Step 5, it predicts the joint model on each video in the
collection and obtains a new ranked list. In Step 6, the
ranked list from Step 5 is combined with the list in the pre-
vious iteration. The feedback is conducted iteratively until
the maximum feedback iteration is reached. Empirically, we
have found that the maximum iteration usually ranges from
2 to 3 with the step size n = 5 (see Section 5.4). In the
algorithm, k™ is increased by a step size 7 in each iteration,

!The proposed method is general and also applies to feed-
back images and documents with multimodal features.

because if it is not increased, similar pseudo-positives used
in previous iterations will probably be used repeatedly in
the subsequent iterations, resulting in a similar joint model
being trained repeatedly in different iterations. k™ is also
increased to balance the positive and negative sample ratio.
Once the pseudo label set is established, the joint model
can be trained using the existing supervised learning met-
hods in [7, 13]. In Step 6, the simple average fusion can be
used to combine the ranked lists of the two iterations.

We introduce two variants of MMPRF, namely the MM-
PRF MLE Model (or MMPRF-1 for short) and the MM-
PRF Weighted Model (or MMPRF-2). The difference be-
tween the two variants lies in Step 3 of Algorithm 1, where
MMPREF-1 treats each modality equally and MMPRF-2 wei-
ghts modalities by accuracies. In the rest of this section, we
will discuss the pseudo label set construction in both vari-
ants.

3.2 MMPRF-1 MLE Model

The intuition behind MMPRF is that the relevant videos
can be modeled by a joint discriminative model trained on
all modalities. Suppose d; is a video in the collection, the
probability of it being relevant can be calculated from the
posterior P(y;|d;; ©), where y; is the (pseudo) label for jth
video, and © denotes the parameter in the joint model. In
PRF methods on unimodal data, the partial model is trained
on a single modality [28, 5]. We model the ranked list of
each modality by its partial model, and our goal is to re-
cover a joint model from these partial models. Formally, we
use logistic regression as the discriminative model. For ith
modality, the probability of a video being relevant can be
calculated from

1
P(y]|d]v@’b) - 1+6Xp{*9iTW¢j}7 (1)
where w;; represents the video d;’s feature vector from the
ith modality, and 6; is the model parameter vector for the
ith modality. For a clearer notation, the intercept parameter
b is absorbed into ;. According to [28], the parameters O;
can be independently estimated using the top k™ videos and
bottom k~ videos in the ranked list of the ith modality.
However, the models estimated independently on each
modality can be inconsistent. For example, a video may be
used as a pseudo-positive in one modality but as a pseudo-
negative in another. An effective approach to find the con-
sistent pseudo label set is by Maximum Likelihood Estima-
tion (MLE) with respect to the label set likelihood on all
modalities. Formally, let Q@ = |J~, Q; denotes the union of
feedback videos of all modalities. Our objective is to find a
pseudo label set that maximizes:

arg max In L(y;$2,0;
g ma ; (¥ ) @

st |lylh < k%5 y € {0,139
where y = [y1,...yja/]" is the vector of pseudo labels over
feedback videos, and L(y;$2,©;) is the likelihood of the la-
bel set y in the ith modality. The parameter k™ controls
the maximum number of pseudo-positives that should be
included in the label set. The sum of likelihood in Eq. (2)
indicates that each label in the pseudo label set needs to be
verified by all modalities and the desired label set satisfies
the most modalities. The selection process is analogous to



voting, where every modality votes using the likelihood and
the better the labels fit a modality, the higher the likelihood
is. The set with the highest votes is selected as the pseu-
do label set. Because each pseudo label is validated by all
modalities, the false positive video in a single modality can
be corrected during the voting. This property is obviously
unavailable when only a single modality is considered.

To solve Eq. (2), we rewrite the logarithmic likelihood
using Eq. (1)

InL(y;2,0;) =In [] P(ysld;, ©:)% (1 — P(y;|d;,0:)" )
djeﬂ
| (3)
= w0 wij — 0] wi; — In(1 + exp{—0] wi;})
j=1

As mentioned above, 6; can be derived by gradient ascent
on the ith modality, and w;; is the known feature vector.
Plugging Eq. (3) back to Eq. (2) and dropping the constants,
the objective function becomes

m Q]

argmalenL (v;9,0;) = argmaxZZyﬁ Wij.

=1 =1 j=1 ( )
st [lylh < &5y € {0,131

As can be seen, the problem of finding the pseudo label
set with the maximum likelihood has been switched to an
integer programming problem, where the objective function
is the sum of logarithmic likelihood across all modalities and
the pseudo labels are restricted to be integers. The problem
can be efficiently solved by the method introduced in the
next subsection. Late fusion can be used to construct the
pseudo label set and see Section 3.4 for the justification.
The pseudo-negatives can be either selected by the afore-
mentioned MLE method, or simply sampled from the bottom-
ranked videos of all modalities, as suggested in [28, 6]. In the
worst case, suppose n pseudo-negatives are randomly and
independently sampled from a collection of videos, and the
probability selecting a false negative is p. Let the random
variable X represents the experiment of selecting a pseudo-
negative then the random variable follows the binomial dis-
tribution, i.e. X ~ B(n,p). It is easy to calculate the
probability of selecting at least 99% true negatives by

[0.01n ]
ny n—i
F(X <0.01n) = ; <z>p (1-p)" 7, (5)
where F' is the binomial cumulative distribution function.
p is usually very small as the number of negative videos is
usually far more than that of positive videos. For exam-
ple, on the MED dataset, p = 0.003, and if n = 100, the
probability of randomly selecting at least 99% true nega-
tives is 0.963. This result suggests that randomly sampled
pseudo-negatives should be sufficiently accurate on the MED
dataset.

3.3 MMPRF-2 Weighted Model

The accuracy of different modalities, specifically the ac-
curacy of the top-ranked videos are usually not equal. For-
mally, we introduce a function g : 2% — R\ quantifying the
accuracy of a modality. Let g be the modality weighting
vector g = [g(1), ..., 9(Qm)]" and ||g|l1 < kT. Let Ajgjxm
be a binary matrix A;; = 1 if the ith feedback video in
is in the jth modality, A;; = 0 otherwise. Then A is nor-
malized so that the sum of each row equals 1. MLE with

modality weighting can be expressed in its primal form:

m Q]

arg max Z Z y]0 Wij

i=1 j=1 (6)
st. ATy <g;ye {0,111

Eq. (6) adds constraints in Eq. (2) to control the maximum
number of pseudo-positives to be selected in each modality,
and more pseudo-positives should be selected from accurate
modalities so that they can exert larger impacts. The linear
programming relaxation can be applied to efficiently solve
the problem, where the integer constraint is relaxed by 0 <
y < 1. Eq. (6) after relaxation is well studied and there
exist a plethora of efficient algorithms for its solution, such
as the primal-dual interior-point [11].

As it is nontrivial to estimate modality accuracy g(-) in
the absence of training data, we will discuss two approaches
to do that. The proposed approaches may not be optimal
but they may enlighten authors to further explore new met-
hods in this direction. The first approach is to estimate
the modality accuracy by the query likelihood of the feed-
back videos. The intuition is straightforward that a modal-
ity whose top-ranked videos contain more query words is
supposed to be more important. The intuition agrees with
the assumption in relevance model, where the importance of
a document is weighted by the query likelihood [18]. Let Q;
be the query of ith modality, one way to define ¢g(€2;) is by
the point-wise Kullback-Leibler (KL) divergence

. P(Qil$%)
P(QilC)’

where C denotes the whole collection of videos. Eq. (7) mea-
sures the modality accuracy by the divergence between the
query likelihood of the feedback videos and the background
videos. The increase of the query word occurrence in the
feedback videos leads to the raise of the dissimilarity be-
tween the two likelihood, and eventually leads to the growth
of g(£2;). The absolute value of g(£;) is normalized by k"
and thus we use rank equivalent in Eq. (7) to simplify the
notation. In practice, we found that the rank normalization
often leads to the best result. Suppose Q; = {qi1, ..., git },
P(Q;|C) and P(Q:|Q:) can be calculated from

t t

P(Qil$2) H (qi1€%)

j=1 j=1d;,€9;

where d;; is the kth feedback video in ;. A standard lan-
guage model with Jelinek-Mercer smoothing [31] can be used
to calculate P(g|d).

The query likelihood method cannot be applied on non-
semantic features where the query is missing. The second
approach is more general which estimates modality accu-
racy using the event kit description or the performance on
external test set. An example regarding ASR is to search
the words “narration/narrating” and “process” in the event
kit description. An event including these words tends to
be an instructional event, such as “Making a sandwich” and
“Repairing an appliance”, in which the spoken words are
more likely to be detected accurately than in other types of

() "2 P(Qi]Q) 1o (7)

qIJ |dzk) ( )

We also experimented with other likelihoods such as
P(QiI), 78420 and KL(P(Qi[2:) || P(Q:|C\ Q1)) but
they are all worse than Eq. (7).



events, say “Pakour” and “Flash mob gathering”, where the
background music or noises occur more often. The accuracy
of object/concept detectors on the external test set is anoth-
er indicator for the accuracy. Larger weights can be given
to events containing more accurate detectors. For example,
using an accurate concept detector named “3 or More Peo-
ple” for the event “Parade”, we can achieve the best MAP. In
this case, a better ranked list can be produced if the visual
object modality is weighted higher for this event.

3.4 Relation to Other PRF Methods

MMPRF with Eq. (6) provides a general method and
includes other PRF methods as special cases. It is easy
to verify that Eq. (6) degenerates to Eq. (2), when Vi, j,
gi = g; = k*, and Agixm = Jjo|xm, where J is a all-
ones matrix. Furthermore, if let m = 1, Eq. (2) degener-
ates to the PRF method on a single modality. Specifically,
MMPRF degenerates to the classification-based PRF [27]
when the SVM is used as the joint model in Algorithm 1.
It degenerates to [17], when the joint model is the pair-wise
RankSVM [10].

If the objective function in Eq. (2) is calculated from

1]
InL(y;Q,0,) = Ely|Q,0:] = > _y;P(y;|d;, 0:),  (9)

j=1

then the optimization problem in Eq. (2) can be solved by
the late fusion [22], i.e. the scores in different ranked lists are
averaged and then the top kT videos are selected as pseudo-
positives. In fact, the late fusion is a straightforward way
to combine information in multiple modalities and Eq. (2)
provides a theoretical justification for the simple method i.e.
rather than maximizing the sum of likelihood, one can alter-
natively maximize the sum of expected values. Empirically,
the comparison experiment in Section 5.3 shows that select-
ing pseudo-positives by the likelihood is better than by the
expected value. We hypothesize that it is because the goal
of finding the pseudo label set is different from that of late
fusion, where the former is tailored to select a small number
of accurate labels whereas the latter is to produce a good
ranked list in general.

4. COMPLEXITY ANALYSIS

To show that MMPRF is theoretically efficient, we provide
the time complexity analysis. In a single iteration, there are
two major steps, i.e. solving the linear programming in E-
q. (6), and training partial and joint models on the pseudo
label set. Recall k*, k™ is the number of pseudo-positives
and pseudo-negatives; m is the number of modalities. The
computational complexity of solving Eq. (6) is order m(k+)3,
as the number of constraints is (2mk™ +m) [2]. The partial
logistic regression models can be estimated by the interior-
point method, the computational complexity of which is or-
der mt(k* +k™)? [11], where ¢ is the average feature dimen-
sion across modalities. As different approaches can be used
to train the joint model, it is difficult to analyze its com-
plexity. Here we assume the complexity of joint model is no
more than that of training m partial models. Consequently,
the total complexity is order 2m(l€+)3 +mt(kT + k)% As
in other PRF methods, the size of pseudo label set is far
smaller than, and more importantly does not grow with, the
size of the dataset. Usually they have small value and by
default we use kT = 10, k= = 100, m = 4. In practice, in

our experiments, for an event, an iteration of MMPRF takes
no more than 5 minutes on a desktop with eight cores Intel
Core i7 CPU@2.8GHz and 8GB memory.

S. EXPERIMENTS

5.1 Experimental Setup

Dataset and evaluation: We conducted experiments on
the TRECVID Multimedia Event Detection (MED) 2013
development set, including 20 Pre-Specified events and 10
Ad-Hoc events 3. The performance was evaluated on the
MEDTest dataset consisting of about 25,000 videos, by the
standard metric Mean Average Precision (MAP). The exper-
iments were all conducted in the OEx scenario, in which no
ground-truth positive videos (or video examples) were used.
On Pre-Specified events, the test split released by NIST was
used so that the performance can be compared across teams.
On Ad-Hoc events, as the NIST’s split is missing, our inter-
nal split was used, in which we supplemented the MEDTest
dataset with 50% randomly sampled positive videos. Be-
sides, in the baseline comparison, we added another setting
where each experiment was repeated 10 times on the ran-
domly generated test splits to reduce the bias brought by
the partition. The mean and 90% confidence interval on the
10 splits were reported.

Features: Four types of high-level features were used,
namely Automatic Speech Recognition (ASR), Optical Char-
acter Recognition (OCR), Semantic INdexing (SIN) and D-
CNN (Deep Convolutional Neural Network). ASR and OCR
features were extracted by the tools described [13]. SIN and
DCNN are visual concept/object features. SIN features con-
sist of 346 concepts trained on about 0.35 million shots pro-
vided by TRECVID Semantic Indexing 2012 track. DCNN
features are 1000 visual objects trained on about 1.2 million
ImageNet images by DCNN [12]. Two types of low-level fea-
tures were used. Dense Trajectories were extracted by the
method in [25], and represented by Fisher vectors [21]. The
detailed information about these features is in [14, 13].

Query and retrieval method: The query words of AS-
R and OCR were high frequency words in the event kit de-
scription.  Specifically, the description was first stemmed
by a Porter stemmer, after stop and template words were
removed; then the words occurring more than once were se-
lected as the query words. For SIN&DCNN, the query words
were the most relevant concepts to the event kit description
in terms of the Wikipedia-based similarity [30]. Regard-
ing the retrieval, the language model with Jelinek-Mercer
smoothing [31] was used for all features, where the smooth-
ing parameter A was fixed to 0.8.

Baselines: To verify the efficacy of MMPRF, the perfor-
mance was compared against five baseline methods from the
field of information retrieval and multimedia retrieval. The
first baseline is the plain retrieval method without Pseudo
Relevance Feedback (PRF). The second method is the Roc-
chio PRF, where parameters were set to a = 1.0, b = 0.8,
¢ = 0.5 [9]. The third method is the Relevance Model (R-
M) [15, 4, 18], where the variant with the i.i.d. assump-
tion was used. In the fourth baseline method Classification-
based PRF (CPRF) [27, 28], SVM classifiers were trained
using the top-ranked and bottom-ranked videos. The last

3The list of events can be found at http://www.nist.gov/
itl/iad/mig/med13.cfm



Table 1: MAP (in percentage) comparison with the
baseline methods. MMPRF-1 is the MLE model and
MMPRF-2 is the weighted model.

[ Events [ Method [[ Single split | Ten splits |

Without PRF
Rocchio
Relevance Model
Pre-Specified | CPRF

Learning to Rank
MMPRF-1
MMPRF-2
Without PRF
Rocchio
Relevance Model
Ad-Hoc CPRF

Learning to Rank
MMPRF-1
MMPRF-2
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baseline method is the Learning to Rank method [17, 29],
where LambdaMART [26] was trained using the pairwise

constraints derived from the pseudo positives and negatives [17]

by the toolkit RankLib. Since all baseline methods only
work on a single modality, the PRF method was first ap-
plied on individual features and the normalized ranked lists,
with the score scaling between 0 and 1, were combined by
late (average) fusion. The late fusion was used for the two
considerations: first, it is a robust method, especially where
training data is missing; second, it is a simple method help-
ing rule out other factors in the feedback which may affect
the performance. For a fair comparison, the same feedback
parameters kT = 10, k= = 100 were used across all baseline
and MMPRF methods. In the MMPRF method, lp_solve
toolkit [1] was used to solve the linear programming. The
regression with the elastic net regularization [32] was used
to estimate the parameters of partial models. The joint
model was derived by the method in [14, 13]. Linear and
x? kernel is used for dense trajectory and MFCCs features,
respectively. By default, ten pseudo-positives were select-
ed by Eq. (2) in MMPRF MLE model (MMPRF-1), and
by Eq. (6) in MMPRF Weighted model (MMPRF-2). A
hundred of pseudo-negatives were randomly sampled from
the bottom-ranked feedback videos. In MMPRF Weighted
model, the ASR features were weighted by the presence of
“narration/narrating” and “process” and other features were
weighted based on Eq. (7).

5.2 Feedback Effect

We first examine the overall MAP of different PRF met-
hods and the results are summarized in Table 1, in which
the best result is highlighted. It is worth mentioning that
the task is challenging and the MAP reported here is by far
the best MAP of the 0Ex task on the TRECVID MEDTest
dataset [14]. As we see, both MMPRF-1 and MMPRF-2
significantly outperform the baseline method without PRF,
on both the standard split and the ten splits. For exam-
ple, on the single split, MMPRF-2 increases the MAP of the
baseline without PRF by a relative 158% (absolute 6.2%) on
Pre-Specified events, and by a relative 107% (absolute 4.3%)
on Ad-Hoc events. In addition, MMPRF-1 and MMPRF-2
are also statistically significantly better than other baseline
methods. All the PRF methods except RM and Learning
to Rank improve the performance of the baseline without
PRF, among which MMPRFs are the best methods followed
by CPRF and Rocchio. The failure of RM suggests that the
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Figure 2: AP comparison with the baseline methods.
The fusion results of the baseline are plotted. The
MAP across all events is in Table 1.

relevance model may not transfer well for the multimedia
features recognized by detectors with limited accuracy. The
contribution of Learning to Rank method is subtle as it on-
ly improves the baseline without PRF on Ad-Hoc events.
Overfitting may be a reason accounting for its worse perfor-
mance. Comparing the two variants of MMPRF, MMPRF-2
is more effective than MMPRF-1, suggesting the modality
weighting is beneficial.

Figure 2 plots the performance comparison on each ev-
ent, where the x-axis represents the event ID and the y-axis
denotes the average precision. As we see, MMPRF-2 out-
performs the baseline without PRF on 15 out of 20 Pre-
Specified events, and on 5 out of 10 Ad-Hoc events. We
have found two reasons accounting for the improvements.
First, MMPRF explicitly considers multiple modalities and
thus can produce a more accurate pseudo label set (see Sec-
tion 5.3 for detailed discussions). Second, the performance
of MMPRF is further improved by leveraging both high-level
and low-level features. For example, Figure 3 lists the top
five pseudo-positives for three example events, where E006
“Birthday Party” and E031 “Beekeeping” are two events on
which MMPRF yields improvements, and E025 is an ev-
ent on which MMPRF does not work well. As we see, the
pseudo-positives of the first two events are almost correct,
except the fourth video in “Birthday Party” which is a close-
ly related video about a surprise party before a birthday.
In general, we observed that inaccurate pseudo labels are a
cause of worse feedback performance. In addition, the per-
formance also depends on the difficulty of the event, e.g. The
average precision on a difficult event “Marriage Proposal” is
only 0.3% even if all 10 pseudo-positives are all correct.

5.3 Impact of Pseudo Label Accuracy

To study the impact of the accuracy of pseudo-positives,
we conduct the following experiments, where the pseudo-
positives are simply selected as the top kT videos in the
ranked lists of individual features, and the late fusion of in-
dividual features. Figure 4 illustrates the accuracy of the



EO031 Beekeeping

E025 Marriage Proposal

Figure 3: Top 5 pseudo-positives used in the events.
True positives and false positives are marked in the
lower-right of each key frame.

Table 2: MAP (in percentage) comparison with

different pseudo label sets. Top k' denotes the
#pseudo-positives used in the feedback. P@QN is the

precision of the pseudo-positives.
Pre-Specified Ad-Hoc
‘ Pseudo label set ‘ Top kT ‘ PON MAP PON  MAP
Without PRF - - 3.90 - 4.00
ASR 10 0.34 5.33 0.28 5.13
ASR 20 0.26 5.18 0.20 4.49
OCR 10 0.42 7.63 0.33 6.88
OCR 20 0.35 5.23 0.24 5.28
SIN/DCNN 10 0.16 2.50 0.18 3.33
SIN/DCNN 20 0.12 2.48 0.17 2.67
Late Fusion 10 0.30 4.25 0.35 7.18
Late Fusion 20 0.21 3.00 0.25 4.16
MMPREF-2 10 0.48 10.05 0.33 8.32
MMPREF-2 20 0.45 9.23 0.3 8.13

pseudo-positives generated in this way, where Figure 4(a)-
(d) corresponds to the top 20 videos in the ranked list of
ASR, OCR, SIN&DCNN and the late fusion, respectively;
Figure 4(e)-(f) are generated by MMPRF-1 and MMPRF-
2. In each figure, the x-axis represents the event ID and
the y-axis denotes the rank of the video. A bright(black)
block denotes a true(false) positive. As we see, MMPRF-2
produces the most accurate pseudo-positives whose average
Precision@20 is 8.1. Compared with individual features, the
higher precision of MMPRF results from the exploitation of
the joint information residing in multiple modalities. Com-
pared with late fusion, the result suggests maximizing ex-
pected value is less optimal than maximizing the likelihood.
The difference between the likelihood and the expected value
can be analyzed by comparing MMPRF-1 with Late Fusion,
as both of them treat each modality equally.

Then we plug the generated pseudo-positives into Algo-
rithm 1, together with the same 100 pseudo-negatives sam-
pled from the bottom-ranked videos. Table 2 lists the re-
sults, where the “Top k*” column indicates the number of
pseudo-positives used in training the joint model, and the
PQ@QN column lists the accuracy of these pseudo-positives.
As we see, MMPRF-2 shows the best performance and Al-
gorithm 1 with reasonably accurate pseudo-positives can
still beat the baseline without PRF, e.g. ASR Top 10.
Figure 5(a) illustrates the result in Table 2 by a scatter
plot where the x-axis represents the accuracy of the pseudo-
positives and the y-axis represents the classification MAP.
As can be seen, there is a strong correlation between the
MAP and the accuracy of pseudo-positives. The average
Pearson correlation is 0.93. We also conduct the similar ex-
periment on pseudo-negatives, where the pseudo-positives
are fixed and the pseudo-negatives are randomly selected
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Figure 5: The correlation between the pseudo la-
bel accuracy and the classification M AP. Each point
represents an experiment with pseudo samples with
certain accuracy.
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Figure 6: The impact of #iterations and step sizes.

from the bottom-ranked videos. The experiments are con-
ducted five times and the result is shown in Figure 5(b).
As we see, the precision is always larger than 0.980 as the
false negatives are difficult to find which substantiates the
analytical result in Section 3.2. Given such highly accu-
rate pseudo-negatives, the impact of pseudo-negatives on
the MAP seems to be marginal. In summary, the results
demonstrate that the accuracy of the pseudo-positives has
a substantial impact on the classification MAP. The impact
of the accuracy of pseudo-negatives, however, appears to be
negligible.

5.4 Impact of #Iteration and the Step Size

To study the impact of the number of iteration and the
step size in Algorithm 1, we execute the MMPRF-2 algorith-
m using different parameter settings. Figure 6 plots the re-
sult, where the x-axis is the iteration number, and the y-axis
represents the MAP. The iteration 0 corresponds to the base-
line without PRF. Recall k¥, k= and 7 denotes #pseudo-
positives, #pseudo-negatives and the step size, respectively.
According to Algorithm 1, #pseudo-positives used in ith it-
eration equals (i —1)*n+k™". We fix the positive to negative
ratio to 10 in all experiments i.e. k= = 10k™. As we see,
MMPRF manages to improve the baseline without PRF in
all parameter settings, indicating that MMPRF is less sensi-
tive to parameter changes. The best MAPs of Pre-Specified
and Ad-Hoc events are located at the second iteration of the
red curves marked by triangles, suggesting that k™ = = 10
is a good parameter setting. The MAP begins decreasing
after 2 iterations in all settings, probably due to having ex-
hausted the true positive feedback videos. The green curves
marked by squares (k™ = n = 15) drop the most rapidly,
suggesting that a large step size may hurt performance.

6. CONCLUSIONS AND FUTURE WORK
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Bright blocks indicate true positives and dark

blocks indicate false positives. The average Precision@20 is listed in the parentheses. E006-E015 and E021-
E030 are Pre-Specified events and E031-E040 are Ad-Hoc events.

We proposed a novel method for event search in video
with zero examples. Unlike existing methods, the feedback
is conducted using multiple ranked lists. We approached
the pseudo label construction by maximum likelihood esti-
mation and maximum expected value, which are formulat-
ed as well-studied linear programming problems. By train-
ing a joint model on the pseudo label set, the approach,
for the first time, leverages non-semantic low-level features
for multimedia event detection without any training data.
Evaluated on TRECVID MEDTest datasets, including 30
events, the approach boosts the baseline by up to 158% in
terms of the mean average precision. The comparison exper-
iments provide insight about the factors influencing the final
performance. For example, we found that the accuracy of
pseudo-positives has a much more substantial impact on the
classification MAP than the accuracy of pseudo-negatives.
A larger step size seems to hurt performance. In future work,
we will extend this method to discriminate the importance
of the feedback videos at different rank positions in training
the joint model.
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