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ABSTRACT

Reranking has been a focal technique in multimedia retrieval
due to its efficacy in improving initial retrieval results. Cur-
rent reranking methods, however, mainly rely on the heuris-
tic weighting. In this paper, we propose a novel rerank-
ing approach called Self-Paced Reranking (SPaR) for multi-
modal data. As its name suggests, SPaR utilizes samples
from easy to more complex ones in a self-paced fashion.
SPaR is special in that it has a concise mathematical ob-
jective to optimize and useful properties that can be the-
oretically verified. It on one hand offers a unified frame-
work providing theoretical justifications for current rerank-
ing methods, and on the other hand generates a spectrum
of new reranking schemes. This paper also advances the
state-of-the-art self-paced learning research which potential-
ly benefits applications in other fields. Experimental result-
s validate the efficacy and the efficiency of the proposed
method on both image and video search tasks. Notably,
SPaR achieves by far the best result on the challenging
TRECVID multimedia event search task.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Retrieval
Models; I.2.6 [Artificial Intelligence]: Learning

General Terms

Algorithms, Measurement, Experimentation

Keywords

Multimodal Reranking; Multimedia Event Detection; Self-
paced Learning; Zero-Example Search; Content-based Search

1. INTRODUCTION
In the era where multimedia contents are being produced

and shared in an unprecedented pace, multimedia search has
become increasingly crucial in providing quality service for
users to issue semantic queries, e.g. searching for visual ob-
jects or events. Reranking is a focal technique to improve
the quality of search results [3]. The intuition is that the
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Figure 1: Comparison of binary, predefined and
learned weights on the event “Birthday Party”. All
videos are used as positive in reranking. Learned
weights are learned by the proposed method.

initial ranked result brought by the query is noisy [33], and
can be refined by the multimodal information residing in the
retrieved videos/images. For example, in image search the
reranking is performed based on the results of text-based
search, in which the initial results are retrieved by match-
ing images’ surrounding texts [17, 39]. Studies show that
reranking methods can improve the Mean Average Precision
(MAP) of the initial result by a relative 17% on a represen-
tative dataset [32, 26].

This observation is confirmed by a recent study on mul-
timodal content-based search [13], in which the reranking
is performed on multimodal content features extracted from
the video content, and no textual metadata, such as the title,
is available. Reranking by multimodal content-based search
is still an understudied problem. To advance the new tech-
nologies in this direction, NIST initiated a task called Mul-
timedia Event Detection (MED) 0Ex (Zero-Example) [7, 13,
4] in TRECVID 2013. The task is to detect the occurrence
of a main event occurring in a video clip, e.g. “Birthday
party”, in the absence of example videos, which resembles
a real-world search scenario where example videos are of-
ten unavailable. It is more challenging than reranking by
text-based search in image search, since the content features
not only come from multiple modalities but also much more
noisy. Nevertheless, the method in [13] still manages to yield
a 158% relative MAP improvement over the plain retrieval
result. Due to the significant improvement, NIST includes
reranking as an official condition in TRECVID 20141.
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An important step in reranking is to assign weights to
videos, based on which the reranking is carried out. The
main strategy in current reranking methods is to assign bi-
nary (or predefined) weights to videos at different rank po-
sitions. These weighting schemes are simple to implemen-
t, yet may lead to suboptimal solutions, as demonstrated
in our experiments. For example, the reranking methods
in [38, 13, 8] assume that top-ranked videos are of equal
importance (binary weights). The fact is that, however,
videos ranked higher are generally more accurate, and thus
more “important”, than those ranked lower. On the other
hand, the predefined weights [9] are derived independently
of reranking models, and thus may not faithfully reflect the
latent importance. Fig. 1 illustrates a ranked list of “Birth-
day Party” videos, where all videos are used as positive in
reranking; the top two are true positive; the third video is a
negative but closely related video on wedding shower as they
share key concepts such as “gift”, “cake” and “cheering”; the
fourth video is completely unrelated. As illustrated, neither
binary nor predefined weights reflect the latent importance
residing in the videos. Furthermore, since the binary and
predefined weights are designed based on empirical experi-
ence lacking of theoretical justifications, it is unclear where,
or even whether reranking with these weights converges.

An ideal reranking method would assign appropriate wei-
ghts to videos in a theoretically sound manner. To this end,
we propose a method called Self-Paced Reranking (SPaR)
which assigns weights adaptively in a self-paced fashion. The
method is established on the self-paced learning theory [1,
19]. The theory is inspired by the learning process of human-
s and animals, where samples are not presented randomly
but organized in a meaningful order which illustrates from
easy to gradually more complex ones [1]. In the context of
the reranking problem, the easy samples are the top-ranked
videos that have smaller loss. As opposed to utilizing all
samples to learn a model simultaneously, the proposed mod-
el is learned gradually from easy to more complex samples.
As the name “self-paced” suggests, in every iteration, SPaR
examines the “easiness” of each sample based on what it has
already learned, and adaptively determines their weights to
be used in the subsequent iterations.

SPaR represents a general method of addressing multi-
modal pseudo relevance feedback for 0Ex video search. Com-
pared with existing reranking methods, SPaR has the follow-
ing three benefits. First, it is established on a solid theory,
and of useful properties that can be theoretically verified.
For example, SPaR has a concise mathematical objective to
optimize, and its convergence property can be theoretically
proved in Theorem 1. Besides, since the self-paced learning
is expected to effectively converge to minima of quality [1,
19], SPaR inherently tends to find reasonably good solu-
tions for reranking problems. The experimental results in
Section 5 substantiate this hypothesis. Second, SPaR rep-
resents a general framework for reranking on multimodal
data, which includes other methods, such as [38, 23, 13], as
special cases (See Section 4.2). The connection is significan-
t because once an existing method is modeled as a special
case of SPaR, the optimization methods discussed in this
paper become immediately applicable to analyze, and even
solve the problem. Third, SPaR offers a compelling insight
into reranking by multimodal content-based search [7, 13,
4], where the initial ranked lists are retrieved by content-
based search. Although reranking may not be a novel idea,

reranking by multimodal content-based search is clearly un-
derstudied and worthy of exploration, since existing studies
mainly concentrate on reranking only by text-based search.

On the other hand, this paper also advances the state-
of-the-art self-paced learning frontier. Existing self-paced
learning algorithms adopt a simple binary weighting [1, 19]
in order to obtain the global optimum for subproblems. We
generalize it to real-valued weighting by introducing a spec-
trum of self-paced functions that preserve the global opti-
mum (See Lemma 1 in Section 4.1). The proposed func-
tions not only augment the choices of weighting schemes in
reranking, but also may benefit applications in other fields
that need to discriminate samples’ importance.

The experimental results show promising results on two
challenging datasets. On the TRECVID content-based search
task MED 0Ex, SPaR improves the plain retrieval baseline
by a relative 230% in terms of the MAP. To the best of our
knowledge, the reported MAP is by far the best result on
this TRECVID task. In addition, SPaR also outperforms
the state-of-the-art reranking methods on an image rerank-
ing dataset called Web Query. In summary, the contribution
of this paper is fourfold:

• We propose a novel reranking method that has a sol-
id theoretical background and theoretically verifiable
properties.

• The proposed method provides a general reranking
framework by multimodal content-based search, which
includes existing methods as special cases.

• We discuss a spectrum of self-paced functions that sub-
stantially augment the choices of self-paced learning.
Our work is potentially beneficial to self-paced learn-
ing applications that need to discriminate samples.

• The proposed method achieves by far the best result
on the TRECVID multimedia event search.

2. RELATED WORK
Existing reranking methods are mainly performed by text-

based search, in which the initial ranked list is retrieved by
text/keyword matching [39, 33]. In terms of the types of
the reranking model, these methods can be categorized into
Classification, Clustering, Graph and LETOR (LEarning-
TO-Rank) based reranking. In Classification-based rerank-
ing [38], a classifier is trained upon the pseudo label set,
and then tested on retrieved videos to obtain a reranked
list. Similarly, in LETOR-based reranking [6] instead of a
binary classifier, a ranking function is learned by the pair-
wise [23] or list-wise [33, 32] RankSVM. In Clustering-based
reranking [9], the retrieved videos are aggregated into clus-
ters, and the clusters’ conditional probabilities of the pseu-
do samples are used to obtain a reranked list. The role of
clustering is to reduce the noise in the initial reranking. In
Graph-based reranking [10, 27], the graph of retrieved sam-
ples needs to be first constructed, on which the initial rank-
ing scores are propagated by collective classification meth-
ods such as Random Walk [12], under the assumption that
visually similar videos usually have similar ranks. Gener-
ally, reranking methods, including the above methods, are
unsupervised methods, but there also exist some studies on
supervised reranking [17, 39].

Reranking by multimodal content-based search is still an
understudied problem. To advance the new technologies in
this direction, NIST initiated a content-based search task



1: t = 0; //Iteration zero
2: Choose starting values for y,v;
3: while t ≤ max iteration do

4: Θ
(t+1)
1 , ...,Θ

(t+1)
m = argmaxEy,v(Θ

(t)
1 , ...,Θ

(t)
m ;C);

5: y(t+1),v(t+1) = argmaxEΘ(y
(t),v(t); k);

6: if t is small then increase 1/k;
7: end while
8: return [v1y1, · · · , vnyn]

T ;

Algorithm 1: Reranking in Optimization Perspective.

1: t = 0; //Iteration zero
2: Choose the initial pseudo labels and weights;
3: while t ≤ max iteration do
4: Train a reranking model on the fixed labels and weights;
5: Update the pseudo labels and weights;
6: if t is small then add more pseudo positives;
7: end while
8: return The list of samples after reranking;

Algorithm 2: Reranking in Conventional Perspective.

called MED 0Ex (Zero-Example) in TRECVID 2013. Pre-
viously, research is mainly concentrated on the event search
with 10 or 100 exemplar videos [24, 40, 12, 25]. Only a few
methods have been proposed to tackle the 0Ex search prob-
lem [7, 13, 4]. A closely related work is [13], in which the au-
thors discussed a reranking method named MMPRF, which
yields significant improvements over the plain retrieval re-
sult. As we see in Section 4.2, MMPRF is a special case of
the proposed method that only uses the binary weighting.

Self-paced (or curriculum) learning [19, 1] is a recently
proposed theory, inspired by the teaching of students, where
easy concepts are taught before complex ones. The idea is
to learn the model gradually from easy to complex examples
iteratively in a self-paced fashion. This theory has been suc-
cessfully applied to various applications, including domain
adaptation [30], dictionary learning [31], segmentation [20],
tracking [29], etc. Existing methods all adopt a simple bina-
ry weighting to obtain the global optimum for subproblems.
We generalize it to real-valued weighting that still preserves
the global optimum, which is potentially conducive for self-
paced learning applications in other fields.

3. SELF-PACED RERANKING

3.1 Objective Function
The proposed Self-paced Reranking is a general rerank-

ing framework for multimedia search, which is inherently
performed using features from multiple modalities. Given a
dataset of n videos with features extracted from m modal-
ities, let xij denote the feature of the ith sample from the
jth modalities, e.g., xi1,xi2,xi3 can be the visual, acoustic
and optical character feature vectors extracted from diff-
erent channels of the ith video. yi ∈ {−1, 1} is the pseudo
label for the ith video whose values are assumed since the
true labels are unknown to reranking methods. The kernel
SVM is used to illustrate the algorithm due to its robust-
ness and decent performance in reranking [21, 8]. We will
discuss how to generalize it to other models in Section 4.2.
Let Θj = {wj , bj} denote the classifier parameters for the
jth modality, which includes a coefficient vector wj and a
bias term bj . Let v = [v1, ..., vn]

T denote the weighting
parameters for all samples. Inspired by the self-paced learn-
ing [19], supposed n is the total number of samples and m
is the total number of modalities, the objective function E

can be formulated as:

min
Θ1,...,Θm,y,v

E(Θ1, ...,Θm,v,y;C, k) =

min
y,v,w1,...,wm,

b1,...,bm,{ℓij}

m
∑

j=1

1

2
‖wj‖

2
2 + C

n
∑

i=1

m
∑

j=1

viℓij +mf(v; k)

s.t. ∀i,∀j, yi(w
T
j φ(xij) + bj) ≥ 1− ℓij , ℓij ≥ 0

y ∈ {−1,+1}n,v ∈ [0, 1]n,

(1)

where ℓij is the standard hinge loss, calculated from:

ℓij = max{0, 1− yi · (w
T
j φ(xij) + bj)}. (2)

φ(·) is a feature mapping function to obtain non-linear de-
cision boundaries. C (C > 0) is the standard regulariza-
tion parameter trading off the hinge loss and the margin.
∑m

j=1 viℓij represents the weighted loss of the ith sample.
The weight vi reflects the sample’s importance, and when
vi = 0, the loss incurred by the ith sample is always zero,
i.e. it will be unselected in the training. In the conventional
SVM, all samples share the equal weight 1.

f(v; k) is a regularization term that specifies how the sam-
ples are selected and how their weights are calculated. It
is called the self-paced function as it determines the learn-
ing pace, controlled by the parameter k (k > 0), at which
the model learns new samples. There is an m in front of
f(v; k) as

∑m

j=1 f(v; k) = mf(v;k). f(v; k) can be defined
in various forms in terms of the learning pace, which will be
discussed in Section 3.3. The objective is subjected to two
sets of constraints: the first set of constraints in Eq. (1) is
the soft margin constraint inherited from the conventional
SVM. The second constraints in Eq. (1) define the domains
of pseudo labels and their weights, respectively.

Eq. (1) turns out to be difficult to optimize directly due
to its non-convexity and complicated constraints. However,
it can be effectively optimized by Cyclic Coordinate Method
(CCM) [5]. CCM is an iterative method for non-convex op-
timization, in which the variables are divided into a set of
disjoint blocks, in this case two blocks, i.e. classifier pa-
rameters Θ1, ...,Θm, and pseudo labels y and weights v. In
each iteration, a block of variables can be optimized while
keeping the other block fixed. Suppose EΘ represents the
objective with the fixed block Θ1, ...,Θm, and Ey,v repre-
sents the objective with the fixed block y and v. Eq. (1)
can be solved by Alg. 1, which takes the input of the initial
ranked list, and outputs the reranked list. In Step 2, it ini-
tializes the starting values for the pseudo labels and weights.
Then it optimizes Eq. (1) iteratively via Step 4 and 5, until
the convergence is reached.

Alg. 1 provides a theoretical justification for reranking
from the perspective of optimization. Alg. 2 lists gener-
al steps for reranking that have one-to-one correspondence
with the steps in Alg. 1. The two algorithms present the
same methodology from two perspectives. For example, op-
timizing Θ1, ...,Θm can be interpreted as training a rerank-
ing model. In the first few iterations, Alg. 1 gradually in-
creases the 1/k to control the learning pace, which, corre-
spondingly, translates to adding more pseudo positives, e.g.
top 10 [13] in training reranking models.

Alg. 1 and 2 offer complementary insights. Alg. 1 theoret-
ically justifies Alg. 2 on the convergence and the decrease of
objective. On the other hand, the empirical experience from
studying Alg. 2 offers valuable advices on how to set starting



values from the initial ranked lists, which is less concerned
in the optimization perspective. According to Alg. 2, to use
SPaR one needs to alternate between two steps: training
reranking models and determining the pseudo samples and
their weights for the subsequent iteration. We will discuss
how to optimize Ey,v (training reranking models on pseudo
samples) in Section 3.2, and how to optimize EΘ (select-
ing pseudo samples and their weights based on the current
reranking model) in Section 3.2.

3.2 Learning with the Fixed Pseudo Labels and
Weights

With the fixed y,v, Eq. (1) represents the sum of weighted
hinge loss across all modalities, i.e,

min
Θ1,...,Θm

Ey,v(Θ1, ...,Θm;C)

= min
w1,...,wm,b1,...,bm,{ℓij}

m
∑

j=1

1

2
‖wj‖

2
2 + C

n
∑

i=1

m
∑

j=1

viℓij

s.t. ∀i, ∀j, yi(w
T
j φ(xij) + bj) ≥ 1− ℓij , ℓij ≥ 0.

(3)

As mentioned, viℓij is the discounted hinge loss of the ith

sample from the jth modality. Eq. (3) represents a non-
conventional SVM as each sample is associated with a weight
reflecting its importance. Eq. (3) is non-trivial to optimize
directly due to its complex constraints. As a result, we in-
troduce a method that finds the global optimum for Eq. (3).
The objective of Eq. (3) can be decoupled, and each modal-
ity can be optimized independently. Now consider the jth

modality (j = 1, ..., m). We introduce Lagrange multipliers
λ and α, and define the Lagrangian of the problem as:

Λ(wj , bj , α, λ) =
1

2
‖wj‖

2
2 + C

n
∑

i=1

viℓij

+
n
∑

i=1

αij(1 − ℓij − yiw
T
j φ(xij)− yibj) +

n
∑

i=1

−λijℓij

s.t. ∀i, αij ≥ 0, λij ≥ 0.

(4)

Since only the jth modality is considered, j is a fixed con-
stant. The Slater’s condition trivially holds for the La-
grangian, and thus the duality gap vanishes at the optimal
solution. According to the KKT conditions [2], the following
conditions must hold for its optimal solution:

∇Λ

wj

= wj −
n
∑

i=1

αijyiφ(xij ) = 0,
∇Λ

bj
=

n
∑

i=1

αijyi = 0,

∀i,
∂Λ

∂ℓij
= Cvi − αij − λij = 0.

(5)

According to Eq. (5), ∀i, λij = Cvi−αij , and since Lagrange
multipliers are nonnegative, we have 0 ≤ αij ≤ Cvi. Sub-
stitute these inequations and Eq. (5) back into Eq. (4), the
problem’s dual form can be obtained by:

max
α

n
∑

i=1

αij −
1

2

n
∑

i=1

n
∑

k=1

αijαkjyiykκ(xij ,xkj),

s.t.
n
∑

i=1

yiαij = 0, 0 ≤ αij ≤ Cvi,

(6)

where κ(xij ,xkj) = φ(xij)
Tφ(xkj) is the kernel function.

Compared with the dual form of conventional SVMs, Eq. (6)
imposes a sample-specific upper-bound on the support vec-
tor coefficient, which is the key in computing decision bound-
ary. A sample’s upper-bound is proportional to its weight,

and therefore a sample with a smaller weight vi is less influ-
ential as its support vector coefficient is bounded by a small
value of Cvi. Eq. (6) degenerates to the dual form of conven-
tional SVMs when v = 1. According to the Slater’s condi-
tion, strong duality holds, and therefore Eq. (4) and Eq. (6)
are equivalent problems. Since Eq. (6) is a quadratic pro-
gramming problem in its dual form, there exists a plethora
of algorithms/toolkits to solve it [2].

3.3 Learning with the Fixed Classification Pa-
rameters

With the fixed classification parameters Θ1, ...,Θm, the
objective function of Eq. (1) becomes:

min
y,v

EΘ(y,v; k) = min
y,v

C

n
∑

i=1

m
∑

j=1

viℓij +mf(v; k)

s.t. y ∈ {−1,+1}n,v ∈ [0, 1]n.

(7)

The goal of Eq. (7) is to learn not only the pseudo labels y
but also their weights v. Learning y is easier as its optimal
values are independent of v. Therefore, we first optimize
each pseudo label by:

y∗i = argmin
yi={+1,−1}

EΘ(y,v) = argmin
yi={+1,−1}

C

m
∑

j=1

ℓij , (8)

where y∗
i denotes the optimum for the ith pseudo label. Solv-

ing Eq. (8) is simple as all labels are independent with each
others in the sum, and each label can only take binary values.
Its global optimum can be efficiently obtained by enumerat-
ing each yi. For n samples, we only need to enumerate 2n
times.

Having found the optimal y, the task switches to optimiz-
ing v. f(v; k) is the self-paced function, and in [19], it is
defined based on the l1 norm of v ∈ [0, 1]n:

f(v; k) = −
1

k
‖v‖1 = −

1

k

n
∑

i=1

vi. (9)

Substituting Eq. (9) back into Eq. (7), the optimal v∗ =
[v∗1 , ..., v

∗
n]

T is then calculated from

v∗i =

{

1 1
m

∑m
j=1 Cℓij < 1

k

0 1
m

∑m
j=1 Cℓij ≥ 1

k
.

(10)

The underlying intuition of the self-paced learning can be
justified by the closed-form solution in Eq. (10). If a sam-
ple’s average loss is less than a certain threshold, 1/k in this
case, it will be selected, or otherwise unselected, as a training
example. The parameter k controls the number of samples
to be included in training. Physically, 1/k corresponds to
the “age” of the model. When 1/k is small, only easy sam-
ples with small loss will be considered. As 1/k grows, more
samples with larger loss will be gradually appended to train
a “mature” reranking model.

According to Eq. (10), the variable v takes only binary
values. This scheme is called Hard Weighting as a sam-
ple can be either selected (vi = 1) or unselected (vi = 0).
Hard Weighting is less appropriate in our problem as it can-
not discriminate the importance of samples (see Fig. 2).
Correspondingly, Soft Weighting, which assigns real-valued
weights, reflects the latent importance of samples in train-
ing more faithfully. The comparison is analogous to the
hard/soft assignment in Bag-of-Words quantization, where
an interest point can be assigned either to its closest cluster



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

Average Hinge Loss

S
a
m

p
le

 W
e
ig

h
t

 

 

Hard Weighting

Linear Soft Weighting

Logarithmic Soft Weighting

Mixture Weighting

Figure 2: Comparison of different weighting schemes
(k = 1.2, k′ = 6.7). Hard Weighting assigns binary
weights. The figure is divided into 3 colored regions,
i.e. “white”, “gray” and “black” in terms of the loss.

(hard), or to a number of clusters in its vicinity (soft). Gen-
erally, the soft assignment outperforms the hard assignmen-
t [15]. Before introducing specific soft weighting schemes, we
first examine the general property of the self-paced function.

Definition 1 (Self-paced function). Suppose that v
denotes a weight variable, l is the loss, and k is the learning
pace parameter. f(v; k) is called a self-paced function, if

1. f(v; k) is convex with respect to v ∈ [0, 1].
2. v∗(k, l) is monotonically decreasing with respect to l,

and it holds that lim
l→0

v∗(k, l) = 1, lim
l→∞

v∗(k, l) = 0.

3. v∗(k, l) is monotonically increasing with respect to 1/k,
and it holds that lim

k→0
v∗(k, l) = 1, lim

k→∞
v∗(k, l) = 0.

where v∗(k, l) = argminv∈[0,1] vl + f(v; k).

According to [19], the self-paced function can be decom-
posed into f(v; k) =

∑n

i=1 f(vi; k). The three condition-
s in Definition 1 provide an axiom for self-paced learning.
Condition 2 indicates that the model inclines to select easy
samples (with smaller errors) in favor of complex samples
(with larger errors). Condition 3 states that when the mod-
el “age” 1/k gets larger, it embarks on incorporating more,
probably complex, samples to train a “mature” model. The
limits in these constraints impose the upper bound and low-
er bound for v. The convexity in Condition 1 further ensures
the model can find good solutions.

It is easy to verify that existing functions in self-paced
learning [19, 30] follow Definition 1. Lemma 1 in Section 4.1
indicates the global optimum of Eq. (7) can be obtained
for all functions following Definition 1. Attributed to this
concise definition, a spectrum of rational self-paced learning
functions can be formulated, and we discuss three of them,
namely, linear, logarithmic and mixture weighting2. Note
that the proposed functions may not be optimal as there is
no single weighting scheme that can always work the best for
all datasets. However, they evidently augment the choices
of the soft weighting in the literature.

Linear soft weighting: Probably the most common ap-
proach is to linearly weight samples with respect to their
loss. This weighting can be realized by the following self-
paced function:

f(v; k) =
1

k
(
1

2
‖v‖22 −

n
∑

i=1

vi). (11)

2Exponential weighting is missing in our discussion as it violates
the convexity condition in Definition 1.

Eq. (11) is a convex function of v, and thus the global min-
imum can be obtained at ∇vEΘ(v) = 0. We have

∂EΘ

∂vi
=

m
∑

j=1

Cℓij +m(
1

k
vi −

1

k
) = 0. (12)

Considering vi ∈ [0, 1], the close-formed optimal solution for
vi (i = 1, 2, ..., n) can be written as:

v∗i =

{

−k( 1
m

∑m
j=1 Cℓij) + 1 1

m

∑m
i=1 Cℓij < 1

k

0 1
m

∑m
i=1 Cℓij ≥ 1

k
.

(13)

Similar as the hard weighting in Eq. (10), the weight is 0 for
the samples whose average loss is larger than 1/k; Otherwise,
the weight is linear to the loss (see Fig. 2).

Logarithmic soft weighting: The linear soft weighting
penalizes the weight linearly in terms of the loss. A more
conservative approach is to penalize the weight logarithmi-
cally, which can be achieved by the following function:

f(v; k) =
n
∑

i=1

(ζvi −
ζvi

log ζ
), (14)

where ζ = (k − 1)/k and k > 1. Its partial gradient equals:

∂EΘ

∂vi
=

m
∑

j=1

Cℓij +m(ζ − ζvi ) = 0. (15)

We then can easily deduce:

log(
1

m

m
∑

j=1

Cℓij + ζ) = vi log ζ. (16)

The closed-form optimal solution for the Logarithmic soft
weighting is then given by:

v∗i =

{

1
log ζ

log( 1
m

∑m
j=1 Cℓij + ζ) 1

m

∑m
i=1 Cℓij < 1

k

0 1
m

∑m
i=1 Cℓij ≥ 1

k
.

(17)

Mixture weighting: Mixture weighting is a hybrid of
the soft and the hard weighting. One can imagine that the
loss range is divided into three colored areas, as illustrat-
ed in Fig. 2. If the loss is either too small (“white” area)
or too large (“black” area), the hard weighting is applied.
Otherwise, for the loss in the “gray” area, the soft weight-
ing is applied. Compared with the soft weighting scheme,
the mixture weighting tolerates small errors up to a certain
point. To define the start of the “gray” area, an additional
parameter k′ is introduced. Formally,

f(v; k, k′) = −ζ

n
∑

i=1

log(vi + ζk), (18)

where ζ = 1
k′−k

and k′ > k > 0. The partial gradient is:

∂EΘ

∂vi
=

m
∑

j=1

Cℓij −
mζ

vi + kζ
= 0. (19)

The closed-form optimal solution is given by:

v∗i =











1 1
m

∑m

i=1 Cℓij ≤ 1
k′

0 1
m

∑m

i=1 Cℓij ≥ 1
k

mζ∑
m
i=1

Cℓij
− kζ otherwise.

(20)

Eq. (20) tolerates any loss lower than 1/k′ by assigning the
full weight. It penalizes the weight by the inverse of the loss



for samples in the “gray” area which starts from 1/k′ and
ends at 1/k (see Fig. 2). The mixture weighting has the
properties of both hard and soft weighting schemes. The
comparison of these weighting schemes is listed in the toy
example below.

Example 1. Suppose we are given six samples from two
modalities. The hinge loss of each sample calculated by Eq. (2)
is listed in the following table, where Loss1 and Loss2 column
list the losses w.r.t. the first and the second modality, where-
as “Avg Loss” column lists the average loss. The last four
columns present the weights calculated by Eq. (10), Eq. (13),
Eq. (17) and Eq. (20) where k = 1.2 and k′ = 6.7.

ID Loss1 Loss2
Avg
Loss

Hard Linear Log Mixture

1 0.08 0.02 0.05 1 0.940 0.853 1.000
2 0.15 0.09 0.12 1 0.856 0.697 1.000
3 0.50 0.50 0.50 1 0.400 0.226 0.146
4 0.96 0.70 0.83 1 0.004 0.002 0.001
5 0.66 1.02 0.84 0 0.000 0.000 0.000
6 1.30 1.10 1.20 0 0.000 0.000 0.000

As we see, Hard Weighting produces less reasonable solution-
s, e.g. the difference between the first (ID=1) and the fourth
sample (ID=4) is 0.78 and they share the same weight 1; on
the contrary, the difference between the fourth and the fifth
sample is only 0.01, but suddenly they have totally different
weights. This abrupt change is absent in other weighting
schemes. Log is a more prudent scheme than Linear as it
diminishes the weight more rapidly. Among all weighting
schemes, Mixture is the only one that tolerates small errors.

3.4 Modality Weighting
The accuracies of different modalities usually vary consid-

erably, and modality weighting may be beneficial for rerank-
ing, as suggested in [13, 11]. To incorporate modality weight-
ing, following [13], we rewrite the objective function as:

min
y,v

EΘ(y,v; k) = min
y,v

C

n
∑

i=1

m
∑

j=1

viℓij +mf(v; k)

s.t. y ∈ {−1,+1}n,v ∈ [0, 1]n

ATv ≤ g.

(21)

Eq. (21) degenerates to Eq. (7) when g = [n, n, .., n]T . The
added constraint limits the total weight that each modali-
ty can have. For n samples from m modalities, according
to [13], An×m is a matrix calculated from:

Aij =
I(wT

j φ(xij) + bj > 0)
∑m

j=1 I(w
T
j φ(xij ) + bj > 0)

, (22)

where I(·) is the indicator function which equals 1 when
wT

j φ(xij) + bj > 0, and 0 otherwise. For convenience of
notation, let 0/0 = 0. For each sample, Eq. (22) first counts
the number of modalities that classify it as positive. Then
each row of A is normalized so that it adds up to 1. Ac-
cording to [13], A needs to be calculated only once. ATv
sums up the total weight for each modality. g (g > 0) is a
prior vector imposing the upper-bound on the total weight,
and higher weight should be assigned to accurate modali-
ties [13]3. Due to the introduced constraint, the analytical
solutions in Section 3.3 cannot be directly applied to opti-
mize Eq. (21). To solve it, we first calculate y using Eq. (8)
and then apply gradient descent to find v. Lemma 1 guar-
antees that this method finds the global optimal solution for
Eq. (21).
3Estimating g is beyond the topic of our paper. More information
on this topic can be found in [13].

4. THEORETICAL DISCUSSIONS

4.1 Convergence
The proposed SPaR has some useful properties. The fol-

lowing lemma proves that the global optimum can be ob-
tained for any self-paced function following Definition 1.

Lemma 1. For any self-paced function that follows Def-
inition 1, the gradient descent method in Section 3.4 finds
the global optimal solution for Eq. (7) and Eq. (21).

Proof. Consider the objective of Eq. (21). Suppose y∗ =
[y∗1 , ..., y

∗
n]

T is a solution found by the gradient descent method in
Section 3.4. According to Eq. (8), ∀yi ∈ {−1,+1} and ∀vi ∈ [0, 1],
we have:

EΘ(y∗i , vi; k) ≤ EΘ(yi, vi; k). (23)

Therefore ∀y, ∀v, the following inequations hold:

EΘ(y∗,v; k) =
n
∑

i=1

EΘ(y∗i , vi; k) ≤
n
∑

i=1

EΘ(yi, vi; k) = EΘ(y,v; k).

(24)
In other words, y∗ found by Eq. (8) is the global optimum for
Eq. (21). Now consider the objective with the fixed y∗. Accord-
ing to Definition 1, f(v) is a convex function of v, and because
ATv ≤ g is a linear constraint, Eq. (21) is a convex function of
v. Suppose that v∗ is a solution found by gradient descent, due
to the convexity, v∗ is the global optimum for Eq. (21). There-
fore, y∗,v∗ is the global optimal solution for Eq. (21). The proof
trivially holds for Eq. (7) when g = [n, n, .., n]T .

The following theorem proves the algorithmic convergence.

Theorem 1. Alg. 1 converges to a stationary solution for
any fixed C and k.

Proof. Let the superscript index the variable value in that
iteration, e.g. v(t) represents the value of v in the tth iteration.

Denote Θ(t) = Θ
(t)
1 , ...,Θ

(t)
m . y(0) and v(0) are arbitrary initial

values in their feasible regions. As Eq. (6) is a quadratic pro-

gramming problem, the solution Θ(t) is the global optimum for
Ey,v, i.e.

E(Θ(t),y(t−1),v(t−1)) ≤ E(Θ(t−1),y(t−1),v(t−1)). (25)

According to Lemma 1, v,y are also global optimum for EΘ, i.e.

E(Θ(t),y(t),v(t)) ≤ E(Θ(t),y(t−1),v(t−1)). (26)

Substitute Eq. (26) back into Eq. (25), we have that ∀t ≥ 1,

E(Θ(t),y(t),v(t)) ≤ E(Θ(t−1),y(t−1),v(t−1)). (27)

Eq. (27) indicates that the objective decreases in every iteration.
Since E is the sum of finite elements, it is bounded from below.
Consequently, according to [34], it is guaranteed that Alg. 1 (an
instance of CCM algorithm) converges to a stationary solution of
the problem.

Theorem 1 guarantees the convergence of Alg. 1. Note
that the convergence means a stationary solution whose val-
ues are finally stable, which may not necessarily mean a
global optimal solution. Actually, since the objective func-
tion of Eq. (1) is non-convex, the quality of the solution may
rely on its the initial ranked lists. If initial lists brought by
queries are off-topic, reranking can degrade the initial re-
sult. This is a common problem in all reranking methods
that has been observed in several studies [32, 39, 13]. There
exist some works to alleviate the influence of bad initial val-
ues. One is to estimate the quality of a ranked list, and
only conduct reranking on “good” ranked lists [32]. Another
is to provide some supervision by annotating a few positive
videos, also known as supervised reranking [17, 39]. More
details can be referred to these papers.



4.2 Relation to Existing Reranking Models
A general form of Eq. (1) is written as

min
Θ1,...,Θm,y,v

E(Θ1, ...,Θm,v,y; k) =

min
Θ1,...,Θm,y,v

n
∑

i=1

m
∑

j=1

viLoss(xij ; Θj) +mf(v; k)

s.t. Constraints on Θ1, ...,Θm

y ∈ {−1,+1}n,v ∈ [0, 1]n,

(28)

where Loss(xij ; Θj) is a general function of the loss incurred
by the ith sample against the jth modality, e.g., in Eq. (1) it
is defined as the sum of the hinge loss and the margin. The
constraints on Θ1, ...,Θm are the constants in the specific
reranking model. Alg. 1 is still applicable to solve Eq. (28).

Eq. (28) represents a general reranking framework for 0Ex
video search, which includes existing Classification-based
and LETOR-based reranking methods as special cases. For
example, generally, when Loss takes the negative likelihood
of Logistic Regression, and f(v; k) takes Eq. (9) (hard weight-
ing), SPaR corresponds to MMPRF in [13]. When Loss is
the hinge loss, f(v; k) is Eq. (9), the pseudo labels are as-
sumed to be +1, and there is only one modality, SPaR cor-
responds to Classification-based PRF [38, 8]. Given Loss
and constraints on Θ are from pair-wise RankSVM, SPaR
can degenerate to LETOR-based reranking methods [23].

4.3 Time Complexity
The proposed SPaR is efficient. Suppose n and m is the

total number of samples and modalities, respectively. u is
the average feature dimension. l is the number of pseudo
samples selected by the self-paced function. In an iteration,
the complexity mainly comes from Step 4 and Step 5 in
Alg. 1. In Step 4, the complexity lies in solving the quadratic
programming (order mu · l2). In Step 5, it lies in searching
the optimal y (order mu · n) and the optimal v (order mu ·
n + l2), based on an efficient algorithms which first solves
an unconstrained problem on n variables, and then solve
a constrained problem on l variables. Therefore, the time
complexity for each iteration is order mu · (l2 + n). As in
other reranking methods, the number of pseudo samples is
far less than that of total samples, i.e. l ≪ n. The proposed
method is expected to be efficient, and the empirical runtime
comparison substantiates this claim.

5. EMPIRICAL EXPERIMENTS
In this section, we empirically verify the efficacy and effi-

ciency of the proposed method on two datasets. The TREC-
VID MED represents the task of video reranking by multi-
modal content-based search, and the Web Query represents
the task of image reranking by text-based search.

5.1 TRECVID Multimedia Event Detection
Dataset and evaluation: We conduct experiments on

the TRECVIDMultimedia Event Detection (MED) 2013 de-
velopment and MEDTest set including around 34,000 videos
on 20 Pre-Specified events. The task is to detect the occur-
rence of a main event in a video clip, where all features
have to be extracted from the video content. The perfor-
mance is evaluated on the MEDTest set consisting of about
25,000 videos, by the official metric Mean Average Precision
(MAP). The official test split released by NIST is used, and

the reported MAP is comparable with other teams’ MAP-
s on the same split. The experiments are all conducted in
the 0Ex setting, in which no ground-truth positive videos
are available. In the baseline comparison, we evaluate each
experiment 10 times on randomly generated splits to reduce
the bias brought by the partition. The mean and 90% con-
fidence interval are reported.

Features: Four types of high-level features are used, name-
ly Automatic Speech Recognition (ASR), Optical Character
Recognition (OCR), Semantic INdexing (SIN) and DCNN
(Deep Convolutional Neural Network). SIN and DCNN [18]
is 346 visual concepts and 1,000 visual objects trained on
TRECVID and ImageNet set, respectively. Two types of
low-level features are used: dense trajectories [36] and MF-
CC. The detailed information about these features is in [21].

Baselines: The proposed method is compared against
the following baselines: 1)Without Reranking is a plain re-
trieval method without Reranking, and the language model
with Jelinek-Mercer smoothing is used [41]. 2)Rocchio is a
classical reranking model for vector space model under tf-idf
representation [16]. 3) Relevance Model is a famous rerank-
ing method for text, and the variant with the i.i.d. assump-
tion in [22] is used. 4)CPRF (Classification-based PRF) is
a seminal PRF-based reranking method. Following [38, 8],
SVM classifiers with χ2 are trained using the top-ranked and
bottom-ranked videos [38]. 5)Learning to Rank is a LETOR-
based method. Following [23], it is trained using the pairwise
constraints derived from the pseudo-positives and pseudo-
negatives. A LambdaMART [37] in the RankLib toolkit is
used to train the RankSVM model; 6) MMPRF is a multi-
modal reranking method [13], and the variant with modality
weighting is used [13]. The parameters of all methods, in-
cluding the proposed SPaR, are tuned on MED Research
Set that shares no overlap with our development set. The
tuned parameters are then applied to the MEDTest set.

The baseline methods are selected based on two considera-
tions: first, the methods cover the reranking methods in the
fields of both information retrieval and multimedia retrieval.
Second, the comparison between them helps to isolate the
contribution of different components.

Predefined weighting schemes: Section 3.3 discuss-
es four weighting schemes including the conventional hard
weighting and the proposed three soft weighting schemes.
The following two predefined schemes are also included for
comparison: 1) Interpolation is a commonly used weight-
ing scheme which assigns weights linearly to a sample’ rank
order [9, 33]:

vi =
1

m

m∑

j=1

(1 −
rank(xij)

N
), (29)

where N is the number of total pseudo samples. The weight
for the first sample is 1.0, and 0.0 for the last. rank(·) re-
turns the sample’s rank order in its list. 2) Inverse Rank as-
signs a sample’s weight based on its inverse rank order. The
weight vi equals the average inverse rank across m modali-
ties:

vi =
1

m

m∑

j=1

1

rank(xij)
. (30)

Our model: Alg. 1 is used. Eq. (6) is solved by the
quadratic programming package “quadprog” [28], in which
the parameter C is fixed to 1 and the φ is set as the χ2

explicit feature map [35]. By default, Eq. (18) is used. The
modality weighting is used. g vector is calculated using



Table 1: MAP (× 100) comparison with the baseline
methods across 20 Pre-Specified events.

Method NIST’s split 10 splits

Without Reranking 3.9 4.9 ± 1.6
Rocchio 5.7 7.4 ± 2.2
Relevance Model 2.6 3.4 ± 1.0
CPRF 6.4 8.3 ± 1.8
Learning to Rank 3.4 4.2 ± 1.4
MMPRF 10.1 13.6 ± 2.4
SPaR 12.9 15.3 ± 2.6
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Figure 4: Weights changed by CPRF and SPaR on
representative videos in different iterations.

the query likelihood method in [13]. The initial values of
the pseudo labels and weights are derived using the method
in [13]. Since, according to [13], pseudo negatives has lit-
tle impact on the MAP, the learning is applied on pseudo
positives. Eq. (21) is solved by LM-BFGS [42] in “stats”
package. As in the baseline methods, the parameters are
tuned on MED Research Set.

5.1.1 Comparison with Baseline methods

We first examine the overall MAP in Table 1, in which
the best result is highlighted. The MAP of the proposed
SPaR is by far the best MAP of the 0Ex task reported on
this dataset, according to [13, 7, 4]. As we see, SPaR out-
performs all baseline methods by statistically significant d-
ifferences, on both the official NIST’s split and the 10 splits.
For example, on the NIST’s split, it increases the MAP of
the baseline without reranking by a relative 230% (absolute
9%), and the second best method MMPRF by a relative
28% (absolute 2.8%). Fig. 3 plots the AP comparison on
each event, where the x-axis represents the event ID and
the y-axis denotes the average precision. As we see, SPaR
outperforms the baseline without reranking on 18 out of 20
events, and the second best MMPRF on 15 out of 20 events.
The improvement is statistically significant at the p-level of
0.05, according to the paired t-test. Fig. 6 illustrates the
top retrieved results on two events that have the highest
improvement. As we see, the videos retrieved by SPaR are
more accurate and visually coherent.

We observed two reasons for the improvements over the
conventional reranking methods. First, SPaR can adjust the
weights in a more reasonable way. For example, Fig. 4 illus-
trates the weights assigned by CPRF and SPaR on the event
“E008 Flash Mob Gathering”. Three representative videos
are plotted where the third (ID=3) is true positive, and the
others (ID=1,2) are negative. The tables on the right of
Fig. 4 list their pseudo labels and weights in each iteration.
Since the true labels are unknown to the methods, in the
first iteration, both methods made mistakes. In Conven-
tional Reranking, the initial pseudo labels and learned wei-

Table 2: MAP (×100) comparison of methods
with(w) and without(w/o) modality weighting on
the NIST’s split.

Method w/o Weighting w/ Weighting

MMPRF [13] 9.0 10.1
SPaR 10.8 12.9

Table 3: MAP and MAP@100 comparison with
baseline methods on the Web Query dataset.

Method MAP MAP@100

Without Reranking [17] 0.569 0.431
CPRF [38] 0.658 -
Random Walk [10] 0.616 -
Bayesian Reranking [33, 32] 0.658 0.529
Preference Learning Model [32] - 0.534
BVLS [26] 0.670 -
Query-Relative(visual) [17] 0.649 -
Supervised Reranking [39] 0.665 -
SPaR 0.672 0.557

ghts stay unchanged thereafter. However, SPaR adaptively
assigns the weights as the iteration grows, e.g. it reduces
the overestimated weights of videos (ID=1,2) in iteration
2 and 3 probably because of their dissimilarity from other
pseudo positive videos. Second, modality weighting seems
to be conducive in further improving the MAP. Table 2 lists
the MAP with and without modality weighting [13], where
the MAPs of MMPRF come from [13]. As we see, in both
methods, the variant with modality weighting outperforms
the variant without it.

We found two scenarios where SPaR fails. First, when
the initial top-ranked videos retrieved by queries are com-
pletely off-topic. SPaR may not recover from the inferior
starting values, e.g. the query brought by “E022 Cleaning
an appliance” are off-topic (on cooking in kitchen). Second,
SPaR may not help when the features used in reranking are
not discriminative to the queries, e.g. for “E025 Marriage
Proposal”, our system lacks of meaningful detectors such as
“stand on knees”. Therefore even if 10 true positives are
used, the AP is still bad (0.003).

5.1.2 Comparison of Weighting Schemes

We conduct experiments with different weighting schemes,
and plot their MAPs in Fig. 5, where the x-axis denotes the
iteration, and the y-axis is the MAP. The same step size is
used in all methods. As we see, SPaR with the proposed
soft weighting schemes, including linear, log and mixture
weighting, consistently outperforms the binary and the pre-
defined weighting across iterations. Among them, the mix-
ture weighting is slightly better than others, suggesting the
rationale for tolerating small errors on this dataset. The
MAPs of the proposed soft weighting schemes seem to be
robust and less sensitive to the iteration change, which is
valuable in ranking since the number of true positives is
usually unknown to the algorithms. The MAP drop seems
to be related to the nature of the MED dataset. Evidence
is that the similar pattern can be observed in other meth-
ods [13]. Nevertheless, SPaR still outperforms the binary,
predefined weights and the baseline methods in Table 1.

5.2 Web Query Dataset
To verify SPaR’s performance on image search, we con-

duct experiments on a web image query dataset consisting
of 71,478 images from 353 queries, retrieved by a search en-
gine named Exalead ( http://www.exalead.com/search/).
For each query, the top ranked images generated by Exalead
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are provided, along with the true label for every image. The
dataset is representative as the 353 queries cover a broad
range of topics. The performance is evaluated by the non-
interpolated MAP, as used in [17]. MAP@100 is also includ-
ed for comparison. Note that as the initial result contains a
single modality, no modality weighting is applied.

Following [32, 26], densely sampled SIFT are extracted. A
codebook of 1,024 centroids is constructed. Spatial Tiling [14]
is used to further improve the performance. We compare
SPaR with the state-of-the-art reranking methods. SPaR is
configured in a similar way as discussed in Section 5.1, and
provided initial text-based search results are used. Follow-
ing [26, 32], the parameters are tuned on a validation set
consisting of a subset of queries.

We examine the overall MAP in Table 3. “-” denotes that
the number is unavailable in the cited paper. As we see,
SPaR achieves the promising MAP among state-of-the-art
reranking methods, including Graph-based [10], LETOR-
based [33, 32], Classification-based [38] and even supervised
reranking methods [17, 39], in terms of both MAP and
MAP@100. A similar pattern as in TRECVID MED can be
observed that SPaR significantly boosts the MAP of plain
retrieval without reranking, and obtain comparable or even
better performance than the baseline methods. Generally,
SPaR improves about 84% queries over the method without
reranking. Since the initial ranked lists are retrieved by text
matching, this result substantiates the claim that SPaR is
general and applicable to reranking by text-based search.

5.3 Runtime Comparison
To empirically verify the efficiency of SPaR, we compare

the runtime (second/query) in a single iteration. The ex-
periments are conducted on Intel Xeon E5649 @ 2.53GHz
with 16GB memory and the results are listed in Table 4. To
test the speed of Rocchio and Relevance Model, we built our
own inverted index on the Web Query dataset, and issue the
query against the index. The reranking in MED, which is

Table 4: Runtime Comparison in a single iteration.

Method MED Web Query

Rocchio 5.3 (s) 2.0 (s)
Relevance Model 7.2 (s) 2.5 (s)
Learning to Rank 178 (s) 22.3 (s)
CPRF 145 (s) 10.1 (s)
MMPRF 149 (s) 10.1 (s)
SPaR 158 (s) 12.2 (s)

conducted only on semantic features, is slower because it in-
volves multiple features and modalities. As we see, SPaR’s
overhead over CPRF is marginal on the both sets. This re-
sult suggests SPaR is inexpensive, and agrees with the time
complexity analysis in Section 4.3. The current implemen-
tations for all methods are far from optimal, which involve
a number of programming languages. We will accelerate the
pipeline in future.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed a novel approach called Self-

Paced Reranking (SPaR) for multimodal reranking. SPaR
reveals the missing link between reranking and an optimiza-
tion problem that can be effectively solved by the self-paced
learning. The proposed framework is general, and can be
used to theoretically explain other reranking methods. This
paper also advances the state-of-the-art self-paced learn-
ing research by generalizing binary to real-valued self-paced
functions that preserve global optimum. Experimental re-
sults validate the efficacy and the efficiency of the proposed
method on image and video search. SPaR consistently out-
performs the plain retrieval without reranking, and obtains
decent improvements over the existing reranking methods.
Notably, SPaR achieves by far the best result on the chal-
lenging TRECVID MED 0Ex task.

Possible directions for future work may include automat-
ically selecting appropriate self-paced functions for different
types of reranking problems. Currently, parameters are tuned
on a validation set. The tuning may heavily rely on the qual-
ity of the validation set. Another direction is to study the
parameter tuning based on prior knowledge or heuristics.
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Figure 6: Top ranked videos/images ordered left-to-right using (a) plain retrieval without reranking and (b)
self-paced reranking. True/false labels are marked in the lower-right of every frame.
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