Leveraging High-level and Low-level Features for
Multimedia Event Detection

Lu Jiang, Alexander G. Hauptmann, Guang Xiang
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

{lujiang,alex,guangx}@cs.cmu.edu

ABSTRACT

This paper addresses the challenge of Multimedia Event De-
tection by proposing a novel method for high-level and low-
level features fusion based on collective classification. Gen-
erally, the method consists of three steps: training a classifi-
er from low-level features; encoding high-level features into
graphs; and diffusing the scores on the established graph to
obtain the final prediction. The final prediction is derived
from multiple graphs each of which corresponds to a high-
level feature. The paper investigates two graph construction
methods using logarithmic and exponential loss functions,
respectively and two collective classification algorithms, i.e.
Gibbs sampling and Markov random walk. The theoretical
analysis demonstrates that the proposed method converges
and is computationally scalable and the empirical analysis
on TRECVID 2011 Multimedia Event Detection dataset val-
idates its outstanding performance compared to state-of-the-
art methods, with an added benefit of interpretability.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous

General Terms

Algorithms, Experimentation, Performance

Keywords

Collective classification, feature fusion, multi-modal integra-
tion

1. INTRODUCTION

In the past decade, the Internet has witnessed an explo-
sion of multimedia content. Comparable to the days in the
late 1990s, when people usually got lost in the rising sea of
web pages, now they are overwhelmed by the vast amounts
of multimedia content on the web. To advance the devel-
opment of new technologies for content understanding, the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

MM 12, October 29-November 2, 2012, Nara, Japan.

Copyright 2012 ACM 978-1-4503-1089-5/12/10 ...$15.00.

NIST TRECVID effort initiated a new task called Multi-
media Event Detection(MED) in 2010. The task is more
challenging than the previous ones such as object recognition
and action detection, since an event is often more difficult
to be characterized and thus to be detected. An event is ”an
activity-centered happening that involves people engaged in
process-driven actions with other people and/or objects at
a specific place and time”. For example, the event ”attempt-
ing a board trick” includes video clips such as skating, ski-
ing, surfing and even finger skating. Because of the inherent
difficulties of this task, all research tries to exploit multiple
types of features to achieve better performance. General-
ly these feature can be divided into two categories, namely
high-level and low-level features. Low-level features such as
SIFT and STIP[1], capture the local appearance and texture
statistics of objects in the video represented by a collection
of interest points. On the other hand, high-level features
are represented by a real number estimating the probabili-
ty of observing a concept in the video. Detection based on
high-level features is more consistent with human’s under-
standing and reasoning about the task, where an event is
characterized by the presence/absence of certain concepts
rather than interest points. E.g. a video is probably about
"birthday party” if visual concepts such as "birthday cake”,
’faces” and the audio concept ”cheering” are present. There-
fore, high-level features or attributes are favored in the event
and scene detection in many studies[2, 3].

The process of combining multiple modalities is called
fusion, which can be achieved either by combing the feature
vectors into a single long vector based on which a model is
trained, namely early fusion[4], or by learning different mod-
els for different modalities and aggregating the outputs by
different models, usually called late fusion[5]. Many studies
[3, 6, 7] have shown that fusing features often leads to better
performance as features are usually complementary. Current
fusion approaches offer a simple yet effective way for combi-
nation of multiple modalities. However, the major problem,
especially for the early fusion, is the lack of interpretabil-
ity of the reason for the score change during the fusion.
Therefore it is difficult for a human to understand and trust
the fusion result. To tackle this problem, in this paper, we
propose a method called Feature Fusion by Collective Clas-
sification(FFCC). Our work is motivated by the successful
work in classification on social networks [8] and collaboration
networks[9]. The intuition behind the method is straightfor-
ward and can be summarized into the following process: first
we train a classifier we call a local classifier with low-level
features to capture the general idea of the events in the video

Figure 1: An illustrative graph on high-level feature
”animal”. The video ID is presented at the left-top
of each video and the number below indicates the
score generated by the local classifier.

clips; then we construct a set of graphs, one graph for each
high-level feature, in which two video clips are linked if the
high-level feature concept is either present or absent in both
clips, see Fig. 1. Finally, the event scores obtained from the
local classifier are diffused through the graphs to obtain the
final prediction. The probability diffusion is achieved with
a collective classification algorithm [10], such that the final
score of all video clips are inferred simultaneously, by updat-
ing a video’s score according to the scores of its neighbors.
Unlike other problems on social network, which only involve
a single graph, in this paper, we consider a video clip con-
nected through multiple graphs, each of which corresponds
to a high-level concept. The reason for adopting the multiple
graphs representation is its interpretability. Leveraging the
graph structure, FFCC can correct the false positive con-
nected with true negatives, or false negative connected with
true positives. For example, suppose we are detecting the
event "feeding an animal” using the graph in Fig. 1, the score
of video 1 will be boosted during collective classification be-
cause it receives support from scores of video clip 2 and 3.
The score of video 4, on the other hand, stays unchanged as
it is isolated from the concept graphs of the other videos.

Compared to early and late fusion methods, FFCC has
the following three benefits: first, it is a probabilistic ap-
proach thus has a solid theoretical background; secondly,
the fusion result is interpretable. Since each edge in the
graphs carries semantic meaning, the score changes during
the collective classification can be understood and validated
or verified through inspection. In addition, FFCC repre-
sents a good means to incorporate prior knowledge into the
graph, which is especially useful for ad-hoc event detection
where the training samples are extremely scarce.

In summary, the contributions of this paper are twofold:

e We introduce a novel feature fusion method based on
collective classification on multiple graphs. The empir-
ical analysis demonstrates that the proposed method
improves not only the performance but also the inter-
pretability over the state-of-the-art fusion methods.

o We propose to use Markov Random Walk as an alter-
native collective classification algorithm and prove its
convergence in our framework.

The rest of this paper is organized as follows: Section 2
gives a brief introduction of related work. Section 3 presents
FFCC in details. The experimental results are discussed in
Section 4 and conclusions are presented in the final section.

2. RELATED WORK

The idea of feature fusion has been broadly applied in var-
ious tasks in multimedia retrieval and classification. Snoek
et al. propose the concept of early and late fusion and em-
pirically evaluate their performance on the TRECVID video
retrieval benchmark [3]. A successful application of early fu-
sion is the spatial pyramid matching[11, 12], in which each
image is divided into tiles and features extracted from differ-
ent tiles are concatenated to form the final feature vector.
By fusing the features from different tiles, it encodes the
spatial information about the image. In terms of the late
fusion, Kludas et al. claims that maximal performance will
be obtained while fusing independent modalities[6]. How-
ever, independent modalities are rare in practice and thus
many researchers concentrate on studying the statistical de-
pendency between modalities. Wu et al. propose a method
based on Principle Component Analysis (PCA) and Inde-
pendent Component Analysis (ICA) to exploit the depen-
dency between different modalities[13]. However, since the
method is based on PCA, it assumes 1) that features with
large variances are important and 2) that the principal com-
ponents are orthogonal. As these assumption is too restric-
tive to hold in many data sets, Rasiwasia el al.[14] propose
to eliminate the dependency by Canonical Correlation Anal-
ysis (CCA) i.e. projecting the original feature spaces into
a so-called semantic space that maximizes the correlation
between different modalities. As CCA only requires a lin-
ear relationship between the variable in different modalities,
the assumptions of Wu’s method are relaxed. Compared to
Wu’s idea, our paper can be regarded as an attempt to study
the non-linear correlation in modality fusion.

Collective classification have been drawing increasing at-
tention in the machine learning community because of its
outstanding classification performance on network data such
as the Web[15], social networks [8] and collaboration net-
works[10, 9]. Its distinguishing property, compared with su-
pervised and unsupervised learning, is that the independent
and identical distribution assumption can be ignored. The
most dominant collective classification methods are Loopy
Belief Propagation and Gibbs Sampling. In this paper, we
investigate Markov random walk as an alternative collective
classification algorithm.

3. MODALITIES FUSION

In this section, we present the FFCC algorithm. Specif-
ically, Section 3.1 introduces some intuitions and the high-
level algorithm. The two key issues of graph construction
and collective classification are discussed in Section 3.2 and
Section 3.3. Finally, the computational complexity is ana-
lyzed in the last section.

3.1 Overall Algorithm

First of all, we formulate our intuition as a binary clas-
sification problem. Suppose we are given a set of training
samples consists of X, = {mi}gl, Zir = {zz}ﬁl (z; €]RML,
z; € RM#) and their labels Yir = {y:)Y, (g € Y = {-1,+1})
where x;,z; represents the low-level and high-level feature

vector for the i*® sample in the training set, respectively.
Similarly, test samples for high-level and low-level features
are represented by X;s = {x;}i-1 and Zis = {zi}i=1. Our goal
is to learn a final hypothesis hy for all test samples. For the
convenience, we will use the subscript to index sample and
superscript to index the feature dimension. E.g. a7 denotes
the value of j* dimension of the " sample.

We define a graph G = (V, F), where the vertex set encom-
passes all samples in both training and test set, accordingly
V = Vi U Vis. Each edge e;;, which connects vertex v; and
vj, is associated with a weight w;; measuring the intensity
of the connection. In this paper we only consider undirected
graphs i.e. for each edge w;; = wj;.

A local hypothesis h; denotes the real valuated function
learned from low-level features which estimates the posterior
probability of the label conditioned on low-level features. We
call it local because it inherits the i.i.d. assumption that the
data is independent and identically distributed. Most classi-
fication algorithms that follow this assumption, e.g. logistic
regression and SVM, can be plugged in to learn a local hy-
pothesis. However, for a non-probabilistic model such as
SVM, a calibration may be useful to convert the scores into
a posterior probability. In contrast to the local hypothesis,
a relational hypothesis h, is a posterior probability learned
by collective classification algorithms, in which i.i.d. is no
longer expected to hold and the probability of a sample’s
label is affected by those of its neighbors in graph G.

Algorithm 1: Overview of the Feature Fusion by
Collective Classification

1 train a local hypothesis h; using low-level training
samples (X¢r, Yir);
2 foreach z' do
construct a graph Gi;
train a relational hypothesis h;.,;
end
3 return the optimal final hypothesis found in the
training set;

Given the above notations, the proposed method can be
summarized in the following three steps listed in Algorith-
m 1. First the algorithm obtains a local hypothesis h; from a
local classifier; then it constructs a graph for each high-level
feature z*, on which a relational hypothesis hr; is trained
using a collective classification algorithm; finally, it searches
the best hypothesis over the training set and returns it as
the final hypothesis hy. For instance, we may train a SVM
classifier on low-level features in Step 1; then in Step 2 a
set of graphs are constructed by high-level features and the
SVM prediction scores are updated by the collective clas-
sification algorithm on the established graphs. Finally, the
optimal scores are selected from the updated ones as the
final hypothesis.

If we assume the graphs are mutually independent, the
final hypothesis can be calculated from (see Appendix for
the derivation):

loghs= Y loghr, - (|S|-1)log (1)
zleS
where S is a subset of high-level features. If the graphs are

dependent, the average of the relational hypothesis can be
applied to estimate the final hypothesis. Sometimes when

the number of training samples is insufficient, we may need
to smooth the final hypothesis with the local hypothesis:
~ l-«

hf:W Hhri-l-ahl (2)
1 z'eS

The first part of the right hand side can be regard as the
weighted average of all relational hypothesis. Eq. 2 mod-
els the final hypothesis hy as a linear interpolation of the
relational hypothesis with the local hypothesis with the co-
efficient a. Smoothing is often applied in the case where
training samples are insufficient to obtain an accurate hy-
pothesis. Notice that in both Eq. 1 and Eq. 2 only a subset
of features that are relevant to the label contribute to the
final hypothesis. Searching the global optimal features sub-
set is an NP-hard problem, consequently in Step 3 we apply
a forward wrapper with hill-climbing search to get the sub-
set of features resulting in a locally optimal final hypothesis.
In the following two subsections, we will elaborate the non-
trivial methods in Step 2 by answering two questions: how
to construct a graph from training data and how to train a
relational hypothesis?

3.2 Graph Construction

The goal of graph construction is to construct "homophilous”
graphs using high-level features, in which the samples with
same labels tends to be linked with higher weights than
those with different labels. In this paper, we concentrate
on graph construction using individual high-level feature,
i.e. the connection between two samples solely depends on a
single high-level feature, say the k™ feature z*. Two video
clips are connected if in which the corresponding high-level
concept is present (or similarly defined as absent) in both
clips. For each vertex v;,v; € V the edge weight is calculated
from the following equation.

|2f = 23] (2 =6)(z) ~8) >0
Wi =
Y disconnected otherwise

®3)

where ¢ is a threshold determined by the training set (Zsr, Yzr).
A plausible way of learning a reasonable § is through mutual
information:

6 = argmax H (Yz,) — H(Yir| Z1.:6) (4)
5

where H(Y:) and H(Y:r|Zf.;8) are entropy and condition-
al entropy of the label. The optimal § is obtained when
the correlation between the feature and the label is maxi-
mized. In other words, the amount of information on label
is maximized using the high-level feature with the optimal
d.

Mutual information offers an intuitive yet aggressive way
for the graph construction. We call it aggressive because it
preferentially exploits more potential edges between vertices.
In contrast, we may conceive a cautious way which selects
the parameter § that minimizes the following loss function:

N
§ = argming, ez,, e 50 _ > I((zF = 8)y: > 0) (5)
s i1

where e(zF;6) = SN, 1((2F - 6)y: < 0) and I(-) is the indi-
cator function equaling 1 when (zF — §)y; < 0, 0 otherwise.
In the above loss function, e(zf;é) counts the number of
incorrectly connected vertices in the graph and penalizes
them by the exponential loss. The loss attains minima if

(a) log-loss

(b) exp-loss

Figure 2: The graph generated by log and exp loss function on feature ”walk/running” in Event "Parkour”

the high-level feature perfectly separates the training ver-
tices into two components with all positive samples residing
in one set and all negative samples in the other, otherwise
the loss increases exponentially with e(zf;(;) grows. Based
on this thought, we call Eq. 4 logarithmic loss function s-
ince Vi, H (Y3,) is fixed and maximizing Eq. 4 is equivalent to
minimizing H (V;|Z¢.) which is a logarithmal like function.
The difference between the two loss functions lies in that
exponential loss function proves to be a ”cautious” method
for the graph construction as it imposes a significant penal-
ty when the number of incorrect vertices becomes larger.
On the other hand, a logarithmic loss function tolerates a
large number of incorrect vertices and thus retrieves more
(probably incorrect) edges into the graph.

Parkour ‘Wedding Ceremony
Rank | log-loss exp-loss log-loss exp-loss
1 windows walk/running | dresses adult
2 walk/running building asian people person
3 body parts suburban adult body parts
4 road outdoor talking male person
5 streets face adult female standing

Table 1: Top 5 features selected by log and exp loss
function on the events ”parkour” and ”wedding cer-
emony”.

As it turns out both methods are good at exploiting high-
level features which are highly related to an event. For ex-
ample, Tab. 1 lists the top 5 high-level features selected by
the two methods in terms of their loss (in decreasing order)
on our experimental high-level feature set. It can be seen
that both methods capture essential high-level features dis-
tinguishing the event from others. However, there is a huge
disparity between their generated graphs, see Fig. 2, where
the correct edge which connects two positive or two negative
samples is marked in grey whereas the incorrect edge in red.
The graph generated by the log-loss function is much more
dense and includes more incorrect edges. For instance, the
density of the graph illustrated in Fig. 2(a) is approximately
31 times that of Fig. 2(b), whereas the number of incorrect
edges in Fig. 2(a) is about twice of that in Fig. 2(b).

Being "cautious” increases precision by preventing the er-
ror spreading throughout the graph but it decreases recall
because some potential edges may be missing. We always
face such a tradeoff between precision and recall in practice

and the answer may vary given different datasets and eval-
uation criteria. However, it should be noted that the collec-
tive classification works on graphs where the error between
vertices can also be propagated to the neighbors of nodes
and finally to all vertices within the connected component.
Sometimes a tiny error cascades onward until is renders the
whole estimation inaccurate. Therefore, in a general sense,
being too "aggressive” may not be a prudent policy.

3.3 Collective Inference

The goal of collective learning is to estimate a posterior
probability distribution on class labels conditional on the
established graph G and local hypothesis h;. The learning
algorithm directly models the marginal distribution rather
than the joint distribution on the label, since the discrimina-
tive approach generally requires less training data. Suppose
N represents a set of immediate neighbors of the vertex v;.
Following the first-order Markov assumption, given h;, the
label probability of vertex v; only involves its neighbors N;
, which can be formulated by [10]:

1 .
P(yilG, i) = P(yilNi, lu) = Z I—.Il\/' P(y;|Nj, b)) (6)

where Z is a normalizer and h; can be regarded as a pri-
or embedded in the marginal distribution. In practice, log
probability is applied to avoid the underflow and for the rest
of the paper, we assume the log probability is used.

According to Eq. 6, the label probability of a vertex is de-
termined by the weighted combination of those of its neigh-
bors. Because of the recursive definition, the probability of
each vertex must be inferred simultaneously. In the rest of
this subsection, we will discuss two famous algorithms and
how they solve the inferencing problem.

Gibbs sampling [16] becomes increasingly popular recently
as it is broadly regarded as the most accurate approximate
inference algorithm [9]. The basic idea of Gibbs sampling is
to iteratively sample the label probability over their neigh-
bors, see Algorithm 2. Specifically, first, we initialize the
posterior probability with the prior distribution h;. For con-
venience, y) denotes P(yi|G,h)? and let the superscript

7

1Relaxing the assumption is beyond the topic of this pa-
per. Interested audiences are encouraged to refer [10] for a
discussion.

Algorithm 2: FFCC using Gibbs sampling
input : a graph G, a local hypothesis h;
output: a posterior distribution P(y|G,h;)

foreach v; € V do y§°> = hy(v);
for j =1 to 200 do //brun-in
Generate a ordering O over V and Q < @ ;

while O is not empty do

, . -
yzw = Y ope(NMinQ) wiky;(f)Jrzvke(MmO) wiky;(f),

O=0\vi ; Q=Quus;
end
normalize [;
end

Q03O Gty

[y
o

11 initialize a label vector I¥ = (y{**” ...yﬁoo))T;

12 for j =201 to 2200 do //sampling

13 Generate a ordering O over V and let Q < & ;
14 while O is not empty do

15 U = 2o cning) Wik + Topeoninoy wiryd s
16 lz = lz + yfj);

17 if j mod T =0 then

18 | foreach v, €V do [= Tl—fjl ;

19 end

20 OIO\’U»;;QIQU’U»;;

21 end

22 normalize [;

23 end

24 return |

indicates the iteration number in Gibbs sampling. Step 2
through 9 is a period called ”"burn-in”, in which some it-
erations are ignored in order to eliminate some inaccurate
estimations occurring at the beginning of the sampling. In
Step 3, we create a random ordering over all vertices in G
and a set @) to store all vertices that currently have been
sampled. In Step 6, the label probability y; is updated us-
ing the log form of Eq. 6. Those y,(gj) are applied on the
right side of the equation if they have been sampled at it-
eration j, otherwise y,(c]_l) are applied instead. After the
vertex v; is sampled, sets O,(Q are updated accordingly in
Step 7. Step 11 through 20 is the period where we actual-
ly sample a posterior distribution from the given graph and
prior. It consists of the same steps as those in burn-in pe-
riod excepts that a row vector [is introduced to maintain
the sampling statistics and is updated very T iterations (see
Step 17). After statistics are collected through sufficient
iterations, the algorithm outputs the normalized posterior
probability represented by [. In practice, it is difficult to de-
cide on a sufficient number of iterations for both burn-in and
sampling period as the convergence tests are neither robust
nor well understood [16]. In this paper, we follow the com-
monly predefined settings in [10, 9] and run 200 and 2000
iterations for burn-in and sampling period, respectively.
Although Gibbs sampling proves to be an effective col-
lective classification approach over many datasets, there is
no guarantee that Gibbs sampling will converge within an
acceptable number of iterations. In this paper, we instead
propose to use Markov random walk which is also a famous
model but has not been studied as a collective classification
algorithm. The basic idea can be interpreted as the following
process: the posterior probability y; of a vertex v; is updat-

ed by a random walker, who jumps to any of v;’s neighbors
with probability d and jumps back to the local hypothesis
hi(v;) with probability 1-d. d is a constant number, called
the damping factor, measuring the frequency of the jump
back. The above process is a Markov chain because of the
first-order Markov assumption. To model the above process,
we modify Eq. 6 by introducing an additional term quanti-
fying the probability updates of the jump back, which gives
us:

Pyl)= (L=d)a () +d Y

wz’jP(ijV}vhl)) .
vjeN; kae/\/j Wik

(7)

where Z is a normalizer and hi(v;) represents the local hy-
pothesis for vertex v;. Note as d decreasing, Eq. 7 imposes
more weights on the prior h; and when d = 0, it degenerates
to the local hypothesis, in which only low-level features are
considered. In contrast, when d =1 it ignores the prior and
the process may be unstable and thus may not converge.
The denominator of the second part counts the degree (pre-
cisely out-degree) of vertex v; in the weighted graph G and
for the isolated vertices we add a self-loop to avoid the de-
nominator becoming 0. Compared with Eq. 6, the proba-
bility passing from vertex v; to v; is determined not only
by P(y;|Nj,h) and w;; but also by v;’s out-degree and the
more neighbors a node has, the less probability each of its
neighbors will receive. In other words, the probability pass-
ing from a vertex is locally normalized by its out-degree.
Following the markov process, we define the Markov tran-
sition matrix M as:
d x Wij

M;;=(1-d)hi(vi) + (8)

ka eN; Wik '
based on which the collective classification by Markov ran-
dom walk can be brought forward, see Algorithm 3. Similar
to Gibbs sampling, it initializes the posterior probability
with the prior h;. The posterior probability is then updated
by Eq. 7 in Step 5 until it eventually converges. Following
the graph construction method discussed in Section 3.2, the
convergence is guaranteed(see the proof in Appendix). Fur-
thermore based on our empirical observations, the algorithm
converges very fast, typically in fewer than 20 iterations.

Algorithm 3: FFCC using Random Walk

input : a graph G, a local hypothesis h;
output: a posterior distribution P(y|G,h;)

foreach v; € V do yfo) = hi(v);
Jj=0;
do

J=i+1

v = MyGD
while [y -y, < p;
normalize y;

return y

WO O kW

Compared with the Markov Random walk algorithm, the
performance of Gibbs sampling may vary as its convergence
is not guaranteed. We study the comparison on a tractable
example that allows for clearer diagnosis, illustrated in Fig. 3.
Suppose we have 4 positive samples: v1,v2,v3 and vs and a
negative sample vs. The local hypothesis h; is depicted un-
der each vertex. Since high-level features are imperfect, the

Gibbs Sampling

r r2 3
0968 | 0.729 | 1.000
0.748 | 0.735 | 0.633
0504 | 0.419 | 0.339
0291 0.364 | 0493
0393 | 0.654 | 0.399

08 0.8
0.2, 0.2

0.2 0.9 0.2 Random Walk
’ r 2 3
0957| 0957 | 0.957
0.736| 0736 | 0.736
0532] 0532 | 0.532

0.2 0.2

0232| 0232 | 0.232
0442| 0442 | 0.442

EAENEN IS BN

EIENTA IS N

Figure 3: Comparison between Gibbs sampling and
Random Walk on a tractable example. Shaded ver-
tices are positive samples. The number on edge in-
dicates the weight and the number below each ver-
tex is the probability outputted by local hypothesis.
The two tables on the right are the updated proba-
bility under different runs

graph usually includes incorrect edges, e.g. (v1,v4). We use
Non-interpolated Average Precision (AP) as the evaluation
criteria. The AP for the local hypothesis is 0.95. We run
Gibbs Sampling and Random Walk (d = 0.85) three times
and list the result in the two tables in Fig. 3. Since the
convergence in Random Walk is guaranteed, all three runs
converge to the same distribution, where the AP is improved
to 1.0 since the probability of vs is increased by receiving
the probability passed from vy and v3. On the other hand,
Gibbs sampling yields 3 different results. Though the first
run (column rl) resembles the Random Walk’s estimation,
the other two runs are quite different. Moreover, the third
run’s MAP is 0.888 even worse than the local hypothesis.
Therefore it is worth noting that Gibbs Sampling may yield
different results even with the same configuration. Random
Walk is therefore a recommendable alternative because of
its convergence property.

3.4 Complexity Analysis

This subsection discusses the computational complexity
analysis for the proposed method, which may shed a light
on the method’s scalability as datasets grow in size. Recall
that the dimension of high-level feature vector is My, low-
level features M;, and the number of total samples in the
training set equals to N. Regarding the graph construction,
since the two methods discussed in Sec. 3.2 are essentially
the same method with different loss functions, they share
the same upper bound O(M, (N + N?)) = O(M,N?). The
time complexity for Gibbs sampling is O(M (B + S)N?),
where B and S are two constants representing the number
of iterations for burn-in and sampling period, respectively.
Random walk is O(RMj; N?), where R is the constant num-
ber representing the average iterations to converge. Based
on the assumption that B + S = 2200 and R < 20, random
walk is expected to be much more efficient than Gibbs Sam-
pling. The time complexity of training a local hypothesis
depends on the model and usually is done once beforehand,
therefore we skip this part in the analysis. Regarding the
feature wrapper in Step 3 Algorithm 1, since we adopt a
forward wrapper using a hill climbing search, the complex-
ity becomes O(M;N). Note that here we precompute and
maintain the local and relational hypothesis so that they can
be directly applied in the wrapper. As a result, the time

complexity of the proposed method is O(M;, N* + MiN) for
both Gibbs sampling and Markov random Walk.

4. EXPERIMENTS

In this section, we conduct a series of experiments validat-
ing the claim that the proposed method not only improves
the performance but also the interpretability over the state-
of-the-art method. Specifically, we first compare the pro-
posed method with the baseline method in Section 4.2, then
we study the impact of parameters on system performance.
Finally, the performance of different graph construction and
collective classification algorithms are compared in the last
subsection.

4.1 Setup

Using the MED11 dataset, we conducted the experiment
on the labeled samples development set in TRECVID 2011
contest, which consists of 15 predefined events and 2049
video clips. The details about the dataset are presented
in Figure 4. The datset is adopted mainly for two reason-
s: there are not many public datasets aviablable on event
detection and TRECVID MED11 is one of the most repre-
sentative and challenging public datset. MED11 embraces
various types of video clips for each event, e.g. skating, ski-
ing, surfing and even finger skating in the event “attempting
a board trick”.

Color SIFT (CSIFT) is adopted as the low-level feature.
Soft histogram assignment[17] is applied while constructing
the code book, with the number of centroids equaling to
4096. Then spatial Bag of Words (BoWs) with a Pyramid
Match Kernel[11l, 12] is also used to further improve the
classification result. The local hypothesis is trained using
SVM with Chi-square kernel and multi-class classification is
achieved using one-versus-all SVM. The semantic indexing
object bank from the TRECVID 2011 contest, which con-
sists of 346 visual concepts, is incorporated as the high-level
feature[19]. Each visual concept is encoded as a real value
ranging from 0 to 1. The final hypothesis is derived from the
average of relational hypothesis and smoothed by the local
hypothesis. Regarding the collective classification algorith-
m, we set the damping factor d (see Algorithm 3) to 0.85 and
T (see Algorithm 2) to 10. The default loss function is the
exp-loss function and the collective classification algorithm
is the Markov random walk.

We compare the proposed method with four baseline meth-
ods using 5-fold cross-validation. In the first three baseline
methods we train an SVM with Chi-square kernel where the
difference in methods lies in how they combine the high-level
and low-level features. We call the first method Early Fu-
sion by Feature Concatenation(EF-FC), which simply con-
catenates the low-level features and high-level features in a
new high dimensional feature space with which Chi-square
kernel is then calculated; the second method Early Fusion
by Kernel Fusion (EF-FC) averages their kernel matrixes
and then training a model using the new kernel matrix; the
third one is called Late Fusion (LF), which averages the
classification results of high-level and low-level features; The
last method follows the idea in [14], where we first project
the two original feature spaces into two latent spaces with
the maximum correlation by Canonical Correlation Analy-
sis (CCA)[18] and then we late fuse the outputs of the SVM
classifiers that are trained on the latent spaces. We call it

CCA and according to [6] it achieves the best result given a
linear correlation between high-level and low-level features.

EVENT NAME/
#SAMPLES

D VIDEO CLIP SAMPLES

1 Attempting a
board trick [
(161)

Feeding an
2 animal

(162)

3 Landing a
fish

is|
(119)

4 Wedding
ceremony
(125)

5 Working on a
woodworking|
(141)

6 Birthday
party
(173)

Changing a
vehicle tire

(111)

8 Flash mob
gathering
(173)

9 Getting a
vehicle unstuc!
(130)
Grooming an
10 animal
(138)
11 Makinga
sandwich
(125)
12 Parade

(137)

Parkour
. (111)

Repairing an
14 appliance
(123)

Working on a
15 sewing project
(120)

Figure 4: Overview of MED 11 dataset

The standard metric used in TRECVID MED Contest
Normalized Detection Cost (NDC) function [19] is adopted
as the evaluation metric. NDC is a weighted linear combina-
tion of the system event specific missed detection and false
alarm probabilities. For each event E we have:

0.999><PFA(E)+0.08XP]\/[D(E) (9)
0.08

where Pyp(F) equals the number of miss detection divides
the number of positive clips for event £ and Pra(F) equals
the number of false alarms over the number of negative clip-
s. Minimum NDC (Min NDC) is introduced to ignore the
decision threshold, which measures the best prediction of a
method. Min NDC equals to 0 for the perfect model where
Pra(E) = Pyp(FE) =0 and to 1 for the mute model that
classifies every sample as the negative sample.

NDC(E) =

4.2 Comparison with Baseline Methods

To evaluate the performance of the proposed method, we
compare it with the baseline method and list the result in
Tab. 2. As can be seen, the performance is boosted by fusing
the low-level features and high-level features in all method-
s except for CCA. On average, the proposed method out-
performs other fusion methods and achieves the best score

in 12 out of 15 events. According to the t-test, it is sig-
nificantly better than other baseline methods at the 0.005
level(P-value < 0.0006). The average performance of EF-FC,
EF-KF and LF are virtually the same whereas CCA has the
poorest performance which suggests a non-linear correlation
between the feature spaces in this problem. Regarding the
runtime, on a single core Intel Core i7 CPUQ2.8GHz with
4GB memory, the experiment of Alg. 1 takes around 18
hours for Markov random walk and 66 hours for Gibbs sam-
pling using R (http://www.R-project.org).

As mentioned above, one of the merit that the proposed
method enjoys is the interpretability. We analyze the fusion
result by inspecting the high-level features used in each even-
t. Generally, for the events the reason FFCC is better due
to it selects the distinguishing high-level features reasonably
summarizing the current event and separating it from the
others. E.g. for the event “feeding an animal” (ID=2), it se-
lects the features such as ”cows”, ”cetacean”, "male person”,
“forest”, "birds” and etc.; for the event "wedding ceremony”
(ID=4), such as "room”, ”adult”, "child”, "legs” and etc. We
also found that some features that seems meaningless for
some event turns out useful in improving the performance
e.g. concept "airplane” in the event "wedding ceremony”. It
may be due to either these feature’s corresponding pattern-
s rarely present in the event or the unknown pattern that
the high-level feature’s classifier captures is actually useful.
On the other hand, for some events the proposed method
is worse because it fails to find the robust features relevant
to the event. We conclude two reasons account for the fail-
ure. First the object bank we used is biased for different
types of events. It embraces many features for some events,
e.g. "feeding an animal” (ID=2) and "landing a fish” (ID=3)
whereas only a few for the others e.g. "working on a wood-
working” (ID=5). Second high-level features are not equally
accurate. Therefore some inaccurate features result in poor
performance even if they are relevant to the event.

1D LL HLL EF-FC EF-KF LF CCA FFCC
1 0.576 0.490 0.492 0.508 0.497 0.633 0.454
2 0.872 0.786 0.810 0.828 0.792 0.875 0.743
3 0.588 0.526 0.476 0.498 0.502 0.629 0.408
4 0.430 0.360 0.353 0.331 0.339 0.422 0.250
5 0.722 0.719 0.682 0.658 0.652 0.803 0.688
6 0.673 0.553 0.575 0.568 0.539 0.562 0.481
7 0.790 0.700 0.635 0.657 0.683 0.749 0.542
8 0.455 0.396 0.378 0.343 0.391 0.457 0.355
9 0.547 0.389 0.376 0.407 0.415 0.562 0.347

10 |0.807 0.701 0.680 0.707 0.675 0.562 0.611
11 0.682 0.787 0.772 0.746 0.697 0.803 0.566
12 [0.624 0.488 0.483 0.524 0.472 0.655 0.493
13 [0.598 0.450 0.438 0.443 0.458 0.542 0.429
14 10.544 0.556 0.459 0.443 0.495 0.544 0.408
15 [0.724 0.653 0.646 0.683 0.690 0.721 0.543
AVG | 0.642 0.570 0.550 0.556 0.553 0.647 0.488

Table 2: Performance comparison with baseline
methods in terms of Min NDC. LL for low-level fea-
tures, HL high-level features, EF-FC early fusion by
feature concatenation, EF-KF early fusion by kernel
fusion, LF late fusion and FFCC for the proposed
method. The best method for each event is in bold.

FFCC also allows for interpreting fusion results for indi-
vidual video clips. Fig. 5 illustrates an example where we
select the two video clips with the greatest change during
the collective classification in the event "wedding ceremony”.

Since the result interpretation is beyond the topic of this pa-
per, here we adopt a simple way to calculate the contribution
for each high-level feature. Given a high-level feature, we use
its proportion in the difference between the final hypothesis
and local hypothesis to represents its contribution. In the
first video clip (HVC390469) the score is 0.359 according to
the CSIFT feature whereas because of the presence of visual
concept "kitchen” and ”anchorperson” which rarely present
in the event "weeding ceremony”; the score is decreased by
0.076 and 0.062. In the second video clip (HVC631950), be-
cause of the presence of visual concepts "legs”, "adult” and
”child” that are commonly seen in the event; the score is
increased by 0.049, 0.094 and 0.034. It is worth mentioning
that as the features are imperfect, some interpretation may
disagrees with human’s prior knowledge. Nevertheless the
experiment demonstrates FFCC’s capability in interpreting
the final result, which allows for appreciating not only which
features update the score, but also how much the change is.

CSIFT: 0.359.

-0.076, -0.062 because of the presence of “kitchen” and “anchorperson” ;
-0.089 because of other 27 concepts like: “room” and ” 3 or more people” ;
Fi

I

CSIFT: 0.410.

+0.094, +0.049, +0.034 because of the presence of “adult” , “legs” and “child” ;
+0.034 because of the absence of the concept “bird” ;

+0.215 because of other 25 concepts;

Final score after change : 0.836.

Figure 5:
video clips

Interpreting the change for individual

4.3 Parameter Changes

The number of high-level features incorporated in the fi-
nal hypothesis is determined by the feature wrapper in Algo-
rithm 1. However, an interesting question is that how does
the number of features affect the final result? We conduct-
ed experiments to investigate how the performance changes
when the number of high-level feature grows®. Fig. 6 il-
lustrates the result on two representative events, in which
x-axis represents the number of features incorporated and y-
axis presents the corresponding Min NDC. At the origin no
high-level feature is used, y value simply denotes the per-
formance of low-level features. As it can be seen, at first
the curve starts to fall sharply when the number of features
grows and surpasses the baseline curves quickly. However,
given a certain number of features have been incorporated,
adding more features renders the curve rising. The under-
lying reason may be that due to the lack of sufficient infor-
mation, less features often fails to estimate a good model
so adding more features improves the performance. Nev-
ertheless after sufficient relevant features are incorporated,
adding more features may cause the overfitting thus the per-
formance starts to drop. The subset of high-level features

We did not reduce the feature dimension in the baseline
methods as decreasing the number of high-level features in
them leads to worse results.

leads to the best Min NDC is called the optimal subset of fea-
tures. Though the size of the optimal subset for all events is
less than 125, the number for different events varies with the
mean 68.7 and standard derivation 30.4. E.g. in Fig. 6(a)
the size is 120 whereas in Fig. 6(b) the size equals to 32.
Because the size of optimal subset is much less than the size
of high-level features, which is 346, a considerable amount
of resource could be saved when the method is applied to a
large dataset.

07 —Working on a sewing project||
High-level features
0.68 -- Low-level features

0 20 40 60 80 100 120 140 160
The number of features

(a) working on a sewing project

—Making a sandwich| |
-- Low-level features
High-level features|

0 20 40 60 80 100 120 140 160 180 200
The number of features

(b) Making a sandwich

Figure 6: Performance change with the number of
high-level features increased on two events.

Another observation we found is that unlike the other clas-
sification problem on social network, smoothing turns out to
be very useful in our problem, see Eq. 2. The reason stems
from the fact that number of training samples in our prob-
lem is insufficient to obtain an accurate final hypothesis, e.g.
the feature dimensionality is 32768 but the number of posi-
tive training samples is less than 200. Recall the parameter
« is leant in the training set and apply in the test set. We
conducted the following experiments to study the impact of
changes of a on the final performance. We analyze the event
"wedding ceremony” (event ID 4) and "working on a wood-
working” (event ID 5) where the proposed method has the
greatest and least improvement over the baseline method.
Fig. 7 presents the results in 5-fold in both events. The
x-axis denotes the value of a and y-axis Min NDC value.
The purple circle red triangle represents the Min NDC in
training set and test set, respectively; the solid ones denotes
the optimal a. Generally, the training and testing set follow
the similar distribution and the smoothed hypothesis out-
performs both the local and relational hypothesis while «
scaling between 0.2 to 0.6.

MinhoC

intoc
6

MinnoC
6

MinhoC

MinhDC
04 05 06 07 08 09 10

8
ViaNDC
075 080 08 090 0% 100

VaNDC
070 075 080 08 090 0% 100

Paramotor apha Parametor aipha

arameter slpha Parameter aioha Parametor aipha

Figure 7: The impact of parameter « in the 5 folds of the event "wedding ceremony”(E4) and ”working on a

woodworking”(E5)

4.4 Comparison among proposed methods

0.0047
00111

0.0082

00055
0.8
0.4
0.2
ol

EXP+RW EXP+Gibbs LOG+RW LOG+Gibbs

Min NDC

Figure 8: Comparison with different loss functions
and collective classification algorithms. RW denotes
for Random Walk , Gibbs for Gibbs Sampling, EXP
for exponential loss function and LOG for logarith-
mic function. The number above each bar indicates
the standard derivation.

In Section 3, we investigate two approaches to construct
graphs by different loss functions and two collective clas-
sification algorithms namely Gibbs sampling and Markov
random walk to inference posterior distributions. To evalu-
ate the performance of different methods, we run each ex-
periment 5 times with different cross validation partitions
and report the mean and variance of the average minimum
NDC, illustrated in Fig. 8 in which y-axis denotes for the
average minimum NDC over 15 events. First of all, as can
be seen, random walk with exponential loss function is the
best configuration. In addition it enjoy a relative small vari-
ance. Generally, the variance of random walk is smaller than
that of Gibbs Sampling because of its convergence proper-
ty. Besides, the exponential loss function seems to be better
than the logarithmic function, which suggests introducing
too much error in graphs is harmful for the system.

S. CONCLUSIONS

In this paper, we approached Multimedia Event Detection
with a novel method that fuses high-level and low-level fea-
tures based on collective classification. Our method consists
of three steps: training a classifier from low-level features;
encoding high-level features into graphs; and diffusing the
scores on the established graph to obtain the final predic-
tion. We investigated two graph construction methods using
logarithmic and exponential loss functions, respectively and
two collective classification algorithms namely Gibbs sam-
pling and Markov random walk. The theoretical analysis
showed that the proposed Markov Random Walk converges
and is computationally scalable, and thus superior to Gibbs
sampling. The empirical analysis on the TRECVID 2011
Multimedia Event Detection dataset validates the method
with very good performance compared to state-of-the-art
methods, with an added benefit of interpretability. Besides,
the comparison among the proposed method suggests that
Markov random walk on graphs constructed by exponential
loss function is the best configuration in our framework with
respect to the minimum NDC.

6. ACKNOWLEDGMENTS

This work has been supported by the Intelligence Ad-
vanced Research Projects Activity (IARPA) via Department
of Interior National Business Center contract number D11-
PC20066. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwith-
standing any copyright annotation thereon. The views and
conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the of-
ficial policies or endorsements, either expressed or implied,
of IARPA, DOI/NBC, or the U.S. Government.

7. REFERENCES
[1] L. Laptev, T. Lindeberg. Space-time interest points. In

ICCYV, pages 432-439, Nice, France, 2003.
[2] Li-Jia Li, Hao Su, Eric Xing, Fei-Fei Li. Object bank:
a high-level image representation for scene

classification and semantic feature sparsification. In
NIPS, pages 1378-1386, Vancouver, Canada, 2010.

[3] C. Snoek, M. Worring, A. W. M. Smeulders. Early
versus late fusion in semantic video analysis. In ACM
Multimedia, pages 399-402, Singapore, 2005.

[4] T. Pham, N. Maillot, J. Lim, J. Chevallet. Latent
semantic fusion model for image retrieval and
annotation. In CIKM, pages 439-444, Lisbon,
Portugal, 2007.

[5] H. Escalante, C. Hernédndez, L. Sucar, M. Montes.
Late fusion of heterogeneous methods for multimedia
image retrieval. In ACM MIR, pages 172-179,
Vancouver, Canada, 2008.

[6] J. Kludas, E. Bruno, S. Marchand-Maillet.
Information fusion in multimedia information
retrieval. In Adaptive Multimedia Retrieval, pages
147-159, Paris, France, 2007.

[7] L. Bao et al. Informedia@TRECVID 2011. In Trecvid
Video Retrieval Evaluation Workshop, NIST,
Gaitherburg, USA, 2011.

[8] H. Eldardiry, J. Neville. Across-Model collective
ensemble classification. In AAAI to appear, San
Francisco, USA, 2011.

[9] P. Sen, G. Namata, M. Bilgic, L. Getoor, B.
Gallagher, and T. Eliassi-Rad. Collective classification
in network data. AI Magazine, 29(3):93-106, 2008.

[10] S. Macskassy, and F. Provost. Classification in
networked data: A toolkit and a univariate case study.
JMLR, 8:935-983, 2007.

[11] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of
features: Spatial pyramid matching for recognizing
natural scene categories. In CVPR, pages 21692178,
New York, USA, 2006.

[12] A. Bosch, A. Zisserman, and X. Munoz. Representing
shape with a spatial pyramid kernel. In CIVR, pages
401-408, Amsterdam, Netherlands, 2007.

[13] Y. Wu, E. Y. Chang, K. C. Chang, J. R. Smith.
Optimal multimodal fusion for multimedia data
analysis. In ACM Multimedia, pages 572-579, New
York, USA, 2004.

[14] N. Rasiwasia, JC. Pereira, E. Coviello, G. Doyle, G.
Lanckriet, R. Levy, N. Vasconcelos. A new approach
to cross-modal multimedia retrieval. In ACM
Multimedia, pages 251-260, Firenze, Italy, 2010.

[15] L. K. McDowell, K.M. Gupta, D.W. Aha. Cautious
inference in collective classification. In AAAI pages
596-601, Vancouver, Canada, 2007.

[16] W. R. Gilks,S. Richardson and D. J. Spiegelhalter.
Markov chain Monte Carlo in Practice. Chapman
Hall/CRC Interdisciplinary Statistics, 1996.

[17] J. Gemert, J. Geusebroek, C. Veenman, A. Smeulders.
Kernel codebooks for scene categorization. In ECCYV,
pages 696-709, Marseille, France, 2008.

[18] H. Hotelling. Relations between two sets of variates.
Biometrika, 28:321-377, 1936.

[19] P. Over, G. Awad, J. Fiscus, B. Antonishek, and M.
Michel. Trecvid 2010 - an overview of the goals, tasks,
data, evaluation mechanisms and metrics. In Trecvid
Video Retrieval Evaluation Workshop, NIST,
Gaitherburg, USA, 2010.

[20] Doeblin, W. Exposé sur la théorie des chaines simples

constantes de Markoff & un nombre fini d’états. Rev.
Math. Union Interbalkanique, 2:77-105, 1938.

APPENDIX

THEOREM 1. Let h; be the local hypothesis, hr, = P(y|Gi, hi)
be the i™ relational hypothesis and hy = P(y|G1,...Gn, ki)
be the final hypothesis. Assume G1,...Gy are independent of
each other then

loghf:ilogh”—(n— 1)log hi
i=1
PROOF. For graphs {G1,...Gn}, according to Bayes rule
we have:
P(G1,..Galy, k) P(ylh)
P(G1,..Gnll) '
Since G1,...G,, are independent we have:
Pylh) ITi2, P(Gily, i)
w1 P(G:)
_ P(ylh) T, P(Gily,) P(ylh)™
ITiL, P(Gi) P(ylh)nt

1 n
-—— T[] PWIGi,h
Bl H1 (YIGi,)

P(y|G1,...Gn,hl) =

P(y|G1,...Gn,hl) =

Taking the log on both side of the above equation:

log P(y|G1,...Gn, i) =) " log P(y|Gi, hi)—(n—1)log P(y|h:).
i=1

Since P(y|h;) = hy, substituting hy and h,, for P(y|G1,...Gn, i)

and P(y|Gi, hi) gives the logarithmic form of the final hy-

pothesis. [

THEOREM 2. Algorithm 8 converges to a stationary dis-
tribution in finite time on the graph generated by Eq. 3.

PRrROOF. Let m (i) = P(yi|G,hi) denotes the label distri-
bution over all v; € V at time ¢ and wo = h;. The goal is to
prove m; = M1 = -1 for some finite time ¢.

For each connect component C; in the Graph G:

e if C; contains a single vertex v; € Cj: for t > 2, we have
7Tt(i) = 7Tt_1(’i).

e if C; contains more than one vertices: according to E-
q. 3, Vv;,v; € Cj, there is an edge between from v; to v;.
In other words, the subgraph Cj is strongly connected
and any two vertices are mutually reachable. Therefore
M is irreducible.

Besides, for any pair of vertices in C; as they are mutu-
ally reachable they must have the same period. Conse-
quently all in C; states have the same period. Further-
more, according to Eq. 7, each vertex has a self-loop
edge therefore each vertex has the period 1 and thus
M is aperiodic.

As M is irreducible and aperiodic, then Vuv; € Cj,3t,
s.t. (i) = m-1(3), i.e. the algorithm converges to a
unique stationary distribution for all vertices in C};[20].

Consequently, suppose the convergence time for connec-
t component Cj is t;. Let t = maxc,cc(t;), then Vu; €
G, m(1) = m-1(3). In other words the label distribution
converges to a stationary distribution (i) after ¢ itera-
tions. [

