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In this supplementary material, we present an illustrative
toy example along with the proofs for Theorem 1 and Theo-
rem 2 in the main body of our paper.

Example 1. Given six samples a, b, c, d, e, f . In the cur-
rent iteration, the losses for these samples are ℓ =
[0.1, 0.2, 0.4, 0.6, 0.5, 0.3], respectively. A latent ground-
truth curriculum is listed in the first row of the following
table, followed by the curriculum of CL, SPL and SPCL. For
simplicity, binary scheme is used in SPL and SPCL where
λ = 0.8333. If two samples with the same weight, we rank
them in ascending order of their losses, in order to break the
tie. The Kendall’s rank correlation is presented in the last
column.

Method Curriculum Correlation

Ground-Truth a, b, c, d, e, f -
CL b, a, d, c, e, f 0.73
SPL a, b, f, c, e, d 0.46

SPCL a, b, c, d, e, f 1.00

The curriculum region used is a linear constraint aTv ≤ 1,
where a = [0.1, 0.0, 0.4, 0.3, 0.5, 1.0]T . In the implemen-
tation, we add a small constant 10−7 in the constraints for
optimization accuracy. The constraint follows Definition 2 in
the paper. As shown, both CL and SPL yield the suboptimal
curriculum, e.g. their correlations are only 0.73 and 0.46.
However, SPCL exploits the complementary information in
CL and SPL, and devises an optimal curriculum. Note that
CL recommends to learn b before a, but SPCL disobeys this
order in the actual curriculum. The final solution of SPCL is
v
∗ = [1.00, 1.00, 1.00, 0.88, 0.47, 0.00].

When the predetermined curriculum is completely wrong,
SPCL may still be robust to the inferior prior knowledge giv-
en reasonable curriculum regions are applied. In this case,
the prior knowledge should not be encoded as strong con-
straints. For example, in the above example, we can use
the following curriculum region to encode the complete-
ly incorrect predetermined curriculum: aTv ≤ 6.0, where
a = [2.3, 2.2, 2.1, 2.0, 1.7, 1.5]T
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Method Curriculum Correlation

CL f, e, d, c, b, a -1.00
SPL a, b, f, c, e, d 0.46

SPCL a, f, b, c, e, d 0.33

As we see, even though the predetermined curriculum is
completely wrong (correlation -1.00), the proposed SPCL
still obtains reasonable curriculum (correlation 0.33). This
is because SPCL is able to leverage information in both pri-
or knowledge and learning objective. The optimal solution
of SPCL is v∗ = [1.00, 0.91, 0.10, 0.00, 0.00, 1.00].

Theorem 1. For training samples X = {xi}
n
i=1, given a

curriculum γ(·) defined on it, denote v = [v1, v2, · · · , vn]
T

as its weight variables in Eq. (3) of the maintext. The feasible
region defined by

Ψ = {v|a
T
v ≤c},

where a = [a1, a2, · · · , an]
T

. Ψ is a curriculum region of
γ(·) if 1) Ψ ∧ v ∈ [0, 1]n is nonempty; 2) for any pair of
samples xi,xj , if γ(xi) < γ(xj), it holds that

∫

Ψ
vi dv >

∫

Ψ vj dv, where
∫

Ψ vi dv calculates the expectation of vi
within Ψ; 3) if γ(xi) = γ(xj),

∫

Ψ
vi dv =

∫

Ψ
vj dv.

Proof. (1) Ψ ∧ v ∈ [0, 1]n is a nonempty convex set.

(2) For xi,xj with γ(xi) < γ(xj), denote Ψij =

{vij |a
T

ijvij≤c}, aij /vij the sub-vector of a/v by wiping off

its ith and jth elements, respectively, we can then calculate

the expected value of vi on the region Ψ = {v|a
T
v ≤c} as:

E(vi) =

∫

Ψ

vi dv

=

∫

Ψij

∫

c−a
T
ij

vij

aj

0

∫

c−a
T
ij

vij−ajvj

ai

0

vidvidvjdvij

=

∫

Ψij

∫

c−a
T
ij

vij

aj

0

(

c− a
T
ijvij − ajvj

)2

2a2i
dvjdvij

=

∫

Ψij

(

c− a
T
ijvij

)3
dvij

6a2i aj
.

In the similar way, we can get that:



E(vj) =

∫

Ψ

vj dv =

∫

Ψij

(

c− a
T
ijvij

)3
dvij

6a2jai
.

We thus can get that

E(vi)− E(vj) =

∫

Ψij

(

c− a
T
ijvij

)3
dvij

6a2i a
2
j

(aj − ai) > 0.

Similarly, we can prove that
∫

Ψ
vi dΨ =

∫

Ψ
vj dΨ for

γ(xi) = γ(xj).
The proof is then completed. �

Theorem 2. The binary, linear, logarithmic and mixture
scheme are self-paced functions.

Proof. We first prove the above functions satisfying Condi-
tion 1 in Definition 3, i.e. they are convex with respect to
v ∈ [0, 1]n, where n is the number of samples. As binary,
linear, logarithmic and mixture self-paced functions can be
decoupled f(v;λ) =

∑n

i=1 f(vi;λ):
For binary scheme f(vi;λ) = −λvi:

∂2f

∂2vi
= 0. (1)

For linear scheme f(vi;λ) =
1
2λ(v

2
i − 2vi):

∂2f

∂2vi
= λ > 0, (2)

where λ > 0.
For logarithmic scheme f(vi;λ) = ζvi −

ζvi

log ζ
:

∂2f

∂2vi
= −

1

log ζ
ζvi > 0, (3)

where ζ = 1− λ and λ ∈ (0, 1).
For mixture scheme f(vi;λ) = −ζ log(vi +

1
λ1

ζ):

∂2f

∂2vi
=

ζλ2
1

(ζ + λ1vi)2
> 0 (4)

where λ = [λ1, λ2], ζ = λ1λ2

λ1−λ2

, and λ1 > λ2 > 0.

As the above second derivatives are non-negative, and the
sum of convex functions is convex, we have f(v;λ) for bi-
nary, linear, logarithmic and mixture scheme are convex.

We then prove the above functions satisfying Condition
2 that is when all variables are fixed except for vi, ℓi, v

∗

i

decreases with ℓi
Denote Ew =

∑n

i=1 viℓi + f(v;λ) as the objective with
the fixed model parameters w, where ℓi is the loss for the
ith sample. The optimal solution v

∗ = [v∗1 , · · · , v
∗

n]
T =

argmin
v∈[0,1]n Ew.

For binary scheme:

Ew =
n
∑

i=1

(ℓi − λ)vi;

∂Ew

∂vi
= ℓi − λ = 0;

⇒ v∗i =

{

1 ℓi < λ

0 ℓi ≥ λ.

(5)

For linear scheme:

Ew =
n
∑

i=1

ℓivi +
1

2
λ(v2i − 2vi);

∂Ew

∂vi
= ℓ + viλ− λ = 0;

⇒ v∗i =

{

− 1
λ
ℓ+ 1 ℓi < λ

0 ℓi ≥ λ.

(6)

For logarithmic scheme:

Ew =

n
∑

i=1

ℓivi + ζvi −
ζvi

log ζ
;

∂Ew

∂vi
= ℓ+ ζ − ζvi = 0;

⇒ v∗i =

{

1
log ζ

log(ℓ+ ζ) ℓi < λ

0 ℓi ≥ λ.

(7)

where ζ = 1− λ (0 < λ < 1).
For mixture scheme:

Ew =

n
∑

i=1

ℓivi − ζ log(vi +
1

λ1
ζ);

∂Ew

∂vi
= ℓ−

ζλ1

ζ + λ1vi
= 0;

⇒ v∗i =











1 ℓi ≤ λ2

0 ℓi ≥ λ1
(λ1−ℓ)ζ

ℓλ1

λ2 < ℓi < λ1

(8)

where λ = [λ1, λ2], and ζ = λ1λ2

λ1−λ2

, (λ1 > λ2 > 0).

By setting the partial gradient to zero we arrive the opti-
mal solution of v. It is obvious that vi is decreasing with
respect to ℓi in all functions. In all cases, we have that
lim
ℓi→0

v∗i = 1, lim
ℓi→∞

v∗i = 0.

Finally, we prove that the above functions satisfying Con-
dition 3 that is ‖v‖1 increases with respect to λ, and it holds
that ∀i∈ [1, n], lim

λ→0
v∗i =0, lim

λ→∞

v∗i =1.

It is easy to verify that each individual v∗i increases with
respect to λ in their closed-form solutions in Eq. (5), Eq. (6),
Eq. (7) and Eq. (8) (in mixture scheme, let λ = λ1 represent
the model age). Therefore ‖v‖1 =

∑n

i=1 vi also increases
with respect to λ. In an extreme case, when λ approaches
positive infinity, we have ∀i ∈ [1, n]vi = 1, i.e. lim

λ→∞

v∗i =1

in Eq. (5), Eq. (6), Eq. (7) and Eq. (8). Similarly, when λ
approaches 0, we have lim

λ→0
v∗i =0.

As binary, linear, logarithmic and mixture scheme satisfy
the three conditions, they are all self-paced functions.

The proof is then completed. �


