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Abstract

Matrix factorization (MF) has been attracting much at-
tention due to its wide applications. However, since MF
models are generally non-convex, most of the existing
methods are easily stuck into bad local minima, espe-
cially in the presence of outliers and missing data. To
alleviate this deficiency, in this study we present a new
MF learning methodology by gradually including ma-
trix elements into MF training from easy to complex.
This corresponds to a recently proposed learning fash-
ion called self-paced learning (SPL), which has been
demonstrated to be beneficial in avoiding bad local min-
ima. We also generalize the conventional binary (hard)
weighting scheme for SPL to a more effective real-
valued (soft) weighting manner. The effectiveness of the
proposed self-paced MF method is substantiated by a
series of experiments on synthetic, structure from mo-
tion and background subtraction data.

Introduction
Matrix factorization (MF) is one of the fundamental prob-
lems in machine learning and computer vision, and has
wide applications such as collaborative filtering (Mnih and
Salakhutdinov 2007), structure from motion (Tomasi and
Kanade 1992) and photometric stereo (Hayakawa 1994).
Basically, MF aims to factorize an m × n data matrix Y,
whose entries are denoted as yijs, into two smaller factors
U ∈ Rm×r and V ∈ Rn×r, where r � min(m,n), such
that UVT is possibly close to Y. This aim can be achieved
by solving the following optimization problem:

min
U,V

∑
(i,j)∈Ω

`(yij , [UVT ]ij) + λR(U,V), (1)

where `(·, ·) denotes a certain loss function, Ω is the index
set indicating the observed data, andR(U,V) is the regular-
ization term to guarantee generalization ability and numeri-
cal stability.

Under the Gaussian noise assumption, it is natural to uti-
lize the least square (LS) loss in (1), leading to an L2-norm
MF problem. This problem has been extensively studied
(Srebro and Jaakkola 2003; Buchanan and Fitzgibbon 2005;
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Okatani and Deguchi 2007; Mitra, Sheorey, and Chellappa
2010; Okatani, Yoshida, and Deguchi 2011). Another com-
monly utilized loss function is the least absolute deviation
(LAD), which results in an L1-norm MF problem (Ke and
Kanade 2005; Eriksson and van den Hengel 2010; Zheng et
al. 2012; Wang et al. 2012; Meng et al. 2013). Solving this
optimization problem has also been attracting much atten-
tion since it performs more robust in the presence of heavy
noises and outliers. Other loss functions beyond L2- or L1-
norm have also been considered for specific applications
(Srebro, Rennie, and Jaakkola 2005; Weimer et al. 2007;
Meng and De la Torre 2013).

The main limitation of existing MF methods lies on the
non-convexity of the objective functions they aim to solve.
This deficiency often makes the current MF approaches get-
ting stuck into bad local minima, especially in the presence
of heavy noises and outliers. A heuristic approach for allevi-
ating this problem is to run the algorithm multiple times with
different initializations and pick the best solution among
them. However, this strategy is ad hoc and generally incon-
venient to implement in unsupervised setting, since there is
no straightforward criterion for choosing a proper solution.

Recent advances in self-paced learning (SPL) (Kumar,
Packer, and Koller 2010) provide a possible solution to this
local minimum problem. The core idea of SPL is to train
a model on “easy” samples first, and then gradually add
“complex” samples into consideration, which well simu-
lates the process of human learning. This methodology has
been empirically demonstrated to be beneficial in avoiding
bad local minima and achieving a better generalization re-
sult (Kumar, Packer, and Koller 2010; Tang et al. 2012;
Kumar et al. 2011). Therefore, incorporating it into MF is
expected to alleviate the local minimum issue.

In this paper, we present a novel approach, called self-
paced matrix factorization (SPMF), for the MF task. Specif-
ically, we construct a concise SPMF formulation which can
be easily employed to embed the SPL strategy into general
MF objectives, including the L2- and L1-norm MF. We also
design a simple yet effective algorithm for solving the pro-
posed SPMF problem. Experimental results substantiate that
our method improves the performance of the state-of-the-art
L2- andL1-norm MF methods. Besides, we theoretically ex-
plain the insight for its effectiveness in the L2-norm case by
deducing an error bound for the weighted MF problem.



Related Work
Matrix Factorization
Matrix factorization in the presence of missing data has at-
tracted much attention in machine learning and computer
vision for decades. The L2-norm based MF problem has
been mostly investigated along this line. In machine learn-
ing community, Srebro and Jaakkola (2003) proposed an
EM based method and applied it to collaborative filtering.
Mnih and Salakhutdinov (2007) prompted the L2-norm MF
model under probabilistic framework, and further investi-
gated it using Bayesian approach (Salakhutdinov and Mnih
2008). In computer vision circle, Buchanan and Fitzgibbon
(2005) presented a damped Newton algorithm, using the in-
formation of second derivatives with a damping factor. To
enhance the efficiency in large-scale computation, Mitra et
al. (2010) converted the original problem into a low-rank
semidefinite programming. Okatani and Deguchi (2007) ex-
tended the Wiberg algorithm to this problem, which has been
further improved by Okatani et al. (2011) via incorporating
a damping factor.

In order to introduce robustness to outliers, the L1-norm
MF problem has also been paid much attention in recent
years. Ke and Kanade (2005) solved this problem via al-
ternative linear/quadratic programming (ALP/AQP). To en-
hance the efficacy, Eriksson and van den Hengel (2010) de-
signed an L1-Wiberg approach by extending the classical
Wiberg method to L1 minimization. Through adding con-
vex trace-norm regularization, Zheng et al. (2012) proposed
a RegL1ALM method to improve convergence. Wang et al.
(2012) considered the problem in a probabilistic framework,
and Meng et al. (2013) proposed a cyclic weighted median
approach to further improve the efficiency.

Beyond L2- or L1-norm, other loss functions have also
been attempted. Srebro et al. (2005) and Weimer et al.
(2007) utilized Hinge loss and NDCG loss, respectively,
for collaborative filtering application. Besides, Lakshmi-
narayanan et al. (2011) and Meng and De la Torre (2013)
adopted some robust likelihood functions to make MF less
sensitive to outliers.

Most of the current MF methods are developed on non-
convex optimization problems, and thus always encounter
the local minimum problem, especially when missing data
and outliers exist. We thus aim to alleviate this issue by ad-
vancing it into the SPL framework.

Self-Paced Learning
Inspired by the intrinsic learning principle of hu-
mans/animals, Bengio et al. (2009) proposed a new machine
learning framework, called curriculum learning. The core
idea is to incrementally involve sequence of samples into
learning, where easy samples are introduced first and more
complex ones are gradually included when the learner is
ready for them. These gradually included sample sequences
from easy to complex correspond to the curriculums learned
in different grown-up stages of humans/animals. This strat-
egy, as supported by empirical evaluation, is helpful in alle-
viating the bad local optimum problem in non-convex opti-
mization (Ni and Ling 2010; Basu and Christensen 2013).

Instead of using the aforementioned heuristic strategies,
Kumar et al. (2010) formulated the key principle of cur-
riculum learning as a concise optimization model, called
self-paced learning (SPL), and applied it to latent vari-
able models. The SPL model includes a weighted loss term
on all samples and a general SPL regularizer imposed on
sample weights. By sequentially optimizing the model with
gradually increasing penalty parameter on the SPL regular-
izer, more samples can be automatically included into train-
ing from easy to complex in a pure self-paced way. Mul-
tiple applications of this SPL framework have also been
attempted, such as object detector adaptation (Tang et al.
2012), specific-class segmentation learning (Kumar et al.
2011), visual category discovery (Lee and Grauman 2011),
and long-term tracking (Supančič III and Ramanan 2013).

The current SPL framework can only select samples
into training in a “hard” way (binary weight). This means
that the selected/unselected samples are treated equally
easy/complex. However, this assumption tends to lose flex-
ibility since any two samples are less likely to be strictly
equally learnable. We thus expect to abstract an insightful
definition for the SPL principle, and then extend it to a “soft”
version (real-valued weights).

Self-Paced Matrix Factorization
Model Formulation
The core idea of the proposed SPMF framework is to se-
quentially include elements of Y into MF training from easy
to complex. This aim can be realized by solving the follow-
ing optimization problem:

min
U,V,w

∑
(i,j)∈Ω

wij`(yij , [UVT ]ij)+λR(U,V)+
∑

(i,j)∈Ω

f(wij , k),

s.t. w ∈ [0, 1]|Ω|,
(2)

where w = {wij |(i, j) ∈ Ω} denotes the weights imposed
on the observed elements of Y, and

∑
(i,j)∈Ω f(wij , k) is

the self-paced regularizer determining the samples to be se-
lected in training.

The previously adopted f(w, k) was simply f(w, k) =
− 1
kw (Kumar, Packer, and Koller 2010). Under this regular-

izer, when U,V are fixed, the optimal wij is calculated as:

w∗ij(k, `ij) =

{
1 if `ij ≤ 1/k

0 if `ij > 1/k,
(3)

where the abbreviation `ij represents `(yij , [UVT ]ij) for
the convenience of notation. It is easy to see that if a sam-
ple’s loss is less than the threshold 1/k, it will be selected
as an easy sample (w∗ij = 1), or otherwise unselected
(w∗ij = 0). The parameter k controls the pace at which the
model learns new samples. Physically, 1/k corresponds to
the “age” of the model: when 1/k is small, only the easiest
samples with the smallest losses will be considered; as 1/k
increases, more samples with larger losses will be gradually
included to train a “mature” model.

From this intuition, we present a general definition for the
self-paced regularizer by mathematically abstracting its in-
sightful properties as follows:



Definition 1 (Self-paced regularizer) Suppose that w is a
weight variable, ` is the loss, and k is the learning pace
parameter. f(w, k) is called self-paced regularizer, if

1. f(w, k) is convex with respect to w ∈ [0, 1];
2. w∗(k, `) is monotonically decreasing with respect

to `, and it holds that lim`→0 w
∗(k, `) = 1,

lim`→∞ w∗(k, `) = 0;
3. w∗(k, `) is monotonically increasing with respect

to 1
k , and it holds that limk→0 w

∗(k, `) ≤ 1,
limk→∞ w∗(k, `) = 0;

where w∗(k, `) = arg minw∈[0,1] w`+ f(w, k).

The three conditions in Definition 1 provide an axiomatic
understanding for the SPL. Condition 2 indicates that the
model inclines to select easy samples (with smaller losses)
in favor of complex samples (with larger losses). Condition 3
states that when the model “age” (controlled by the pace pa-
rameter k) gets larger, it tends to incorporate more, probably
complex, samples to train a “mature” model. The limits in
these two conditions impose the upper and lower bounds for
w. The convexity in Condition 1 further ensures the sound-
ness of this regularizer for optimization.

It is easy to verify that the function f(w, k) = − 1
kw

satisfies all of the three conditions in Definition 1, and im-
plements “hard” selection of samples by assigning binary
weights to them, as shown in Figure 1. It has been demon-
strated that in many real applications, e.g., Bag-of-Words
quantization, however, “soft” weighting is more effective
than the “hard” way (Jiang, Ngo, and Yang 2007). Besides,
in practice, the noises embedded in data are generally non-
homogeneous across samples. Soft weighting, which assigns
real-valued weights, inclines to more faithfully reflect the la-
tent importance of samples in training.

Instead of hard weighting, the proposed definition facili-
tates us to construct the following soft regularizer:

f(w, k) =
γ2

w + γk
, (4)

where parameter γ > 0 is introduced to control the strength
of the weights assigned to the selected samples. It is easy to
derive the optimal solution to minw∈[0,1] w`+ f(w, k) as:

w∗(k, `) =


1 if ` ≤ 1

(k+1/γ)2 ,

0 if ` ≥ 1
k2 ,

γ
(

1√
`
− k
)

otherwise.
(5)

The w∗(k, `) tendency curve with respect to ` is shown in
Figure 1. It can be seen that, when the loss is less than a
threshold 1/

√
k, the corresponding sample is treated as an

easy sample and assigned to a non-zero weight; if the loss
is further smaller than 1/

√
k + 1/γ, the sample is treated

as a faithfully easy sample weighted by 1. This on one hand
inherits the easy-sample-first property of the original self-
paced regularizer (Kumar, Packer, and Koller 2010), and on
the other hand incorporates the soft weighting strategy into
training. The effectiveness of the proposed self-paced regu-
larizer will be evaluated in the experiment section.
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Figure 1: Comparison of hard weighting scheme and soft
weighting (γ = 1) scheme, with k = 1.2.

Combining (2) and (4), the proposed SPMF model can
then be formulated as follows:

min
U,V,w

∑
(i,j)∈Ω

wij`(yij , [UVT ]ij)+λR(U,V)+
∑

(i,j)∈Ω

γ2

wij + γk
,

s.t. w ∈ [0, 1]|Ω|.
(6)

It should be noted that, based on Definition 1, it is easy
to derive other types of self-paced regularizers (Jiang et al.
2014). However, in our practice, we found that the proposed
regularizer generally performs better for MF problem.

Self-Paced Learning Process
Similar as the method utilized in (Kumar, Packer, and Koller
2010), we use alternative search strategy (ASS) to solve
SPMF. ASS is an iterative method for solving optimiza-
tion by dividing variables into two disjoint blocks and al-
ternatively optimizing each of them with the other fixed. In
SPMF, under fixed U and V, w can be optimized by

min
w∈[0,1]|Ω|

∑
(i,j)∈Ω

{
wij`ij +

γ2

wij + γk

}
, (7)

where `ij is calculated under the current U and V. This op-
timization is separable with respect to each wij , and thus
can be easily solved by (5). When w is fixed, the problem
corresponds to the weighted MF:

min
U,V

∑
(i,j)∈Ω

wij`(yij , [UVT ]ij) + λR(U,V), (8)

and off-the-shelf algorithms can be employed for solving it.
The whole process is summarized in Algorithm 1.

This is a general SPMF framework and can be incorpo-
rated with any MF task by specifying the loss functions and
regularization terms. In this paper we focus on two com-
monly used loss functions: the LS loss `(yij , [UVT ]ij) =(
yij − [UVT ]ij

)2
and the LAD loss `(yij , [UVT ]ij) =∣∣yij − [UVT ]ij

∣∣, which lead to L2- and L1-norm MF prob-
lems, respectively. We considered two types of regulariza-
tion terms: one is the widely used L2-norm regularization
R(U,V) = 1

2

(
‖U‖2F + ‖V‖2F

)
(Buchanan and Fitzgib-

bon 2005; Mnih and Salakhutdinov 2007); the other is the
trace-norm regularization (Zheng et al. 2012) R(U,V) =
‖V‖∗+I{U:UTU=I}(U), where IA(x) is the indicator func-
tion, which equals 1 if x ∈ A and +∞ otherwise. The lat-
ter has been shown to be effective for rigid structure from



Algorithm 1 Self-paced matrix factorization algorithm
Input: Incomplete data matrix Y ∈ Rm×n with observation in-

dexed by Ω, k0, kend, µ > 1
1: Initialization: solve the MF problem with all the observation

equally weighted to obtain U0,V0; calculate {`ij}(i,j)∈Ω,
t← 0, k ← k0

2: while k > kend do
3: wt+1 = arg min

w∈[0,1]|Ω|

∑
(i,j)∈Ω

{
wij`ij + γ2

wij+γk

}
.

4: {Ut+1,Vt+1}=arg min
U,V

∑
(i,j)∈Ω

wt+1
ij `(yij , [UVT ]ij)+λR(U,V).

5: Compute current {`ij}(i,j)∈Ω.
6: t← t+ 1, k ← k/µ.
7: end while

Output: U = Ut, V = Vt.

motion problem (Zheng et al. 2012). For Step 4 of our al-
gorithm, we modified the solvers proposed by Cabral et al.
(2013) and Wang et al. (2012) to solve the L2-norm reg-
ularized MF with the LS and LAD loss, respectively; and
modified the solver proposed by Zheng et al. (2012) to solve
the trace-norm regularized MF with both the LS and LAD
loss.

Theoretical Explanation
In this section, we give a preliminary explanation for the
effectiveness of SPMF under the LS loss. Let

√
W denote

the element-wise square root of W, and � the Hadamard
product (element-wise product) of matrices. We consider the
following weighted L2-norm MF problem:

min
U,V

∥∥∥√W � (Ŷ −UVT )
∥∥∥2

F
s.t.

∣∣[UVT ]ij
∣∣ ≤ b, (9)

where Ŷ = Y + E is the corrupted matrix with ground
truth Y and noise E, and W is the weight matrix which
satisfies wij > 0 if (i, j) ∈ Ω and wij = 0 otherwise,
and

∑
(i,j)∈Ω wij = |Ω|. Note that the L2-norm regulariza-

tion term R(U,V) = 1
2

(
‖U‖2F + ‖V‖2F

)
imposed on the

matrices U and V can naturally induce the magnitude con-
straint on each element of their product. We utilize this sim-
pler boundness constraint for the convenience of proof. As
a comparison, we also consider the following un-weighted
L2-norm MF problem:

min
U,V

∥∥∥PΩ(Ŷ −UVT )
∥∥∥2

F
s.t.

∣∣[UVT ]ij
∣∣ ≤ b, (10)

where PΩ is the sampling operator defined as [PΩ(Y)]ij =
yij if (i, j) ∈ Ω and 0 otherwise.

Denoting the optimal solution of (9) as Y∗ = U∗V∗T ,
the following theorem presents an upper bound for the close-
ness between Y∗ and the gound truth matrix Y by root mean
square error (RMSE): 1√

mn
‖Y∗ −Y‖F .

Theorem 1 For a given matrix W which satisfies

wij

{
> 0, (i, j) ∈ Ω

= 0, otherwise
, with

∑
(i,j)∈Ω wij = |Ω| and∑

(i,j)∈Ω w
2
ij ≤ 2|Ω|, there exists a constant C, such that

with probability at least 1− 2 exp(−n),

RMSE ≤ 1√
|Ω|

∥∥∥√W �E
∥∥∥
F
+

1√
mn
‖E‖F+Cb

(
nr log(n)

|Ω|

) 1
4

(11)
Here, we assume m ≤ n without loss of generality.
The proof is listed in supplementary material due to page
limitation. When |Ω| � nr log(n), i.e., sufficiently many
entries of Ŷ are sampled, the last term of the above bound
diminishes, and the RMSE is thus essentially bounded by
the first two terms. Also note that the second term is a con-
stant irrelevant to sampling and weighting mechanism, and
the RMSE is thus mainly affected by the first term.

Based on this result, we give an explanation for the effec-
tiveness of the proposed framework for L2-norm MF. Given
observed entries from Ŷ whose indices are denoted by Ω0,
assuming Ω0�nr log(r), we can solve (10) with Ω0. Then
the RMSE can be bounded using (11) withwij=1 if (i, j) ∈
Ω0 and wij = 0 otherwise, and thus mainly determined
by (

√
|Ω0|)−1 ‖PΩ0

(E)‖F . This is also the case studied by
Wang and Xu (2012). We choose Ω1 ⊂ Ω0, which indexes
the first |Ω1| smallest elements of {e2

ij}(i,j)∈Ω0
, where eijs

are entries of E, also assuming Ω1� nr log(r), and solve
(10) with Ω1. Then the corresponding RMSE will be mainly
affected by (

√
|Ω1|)−1 ‖PΩ1

(E)‖F , which is smaller than
(
√
|Ω0|)−1 ‖PΩ0

(E)‖F . Now we can further assign weights
{wij} according to Ω1 such that the assumptions of The-
orem 1 are satisfied, and solve the corresponding problem
(9). The obtained RMSE can be bounded using (11), which
is mainly affected by (

√
|Ω1|)−1‖

√
W � E‖F . If wijs are

specified from small to large in accordance with the de-
scending order of {e2

ij}(i,j)∈Ω1
, (
√
|Ω1|)−1‖

√
W �E‖F is

then further smaller than (
√
|Ω1|)−1 ‖PΩ1

(E)‖F .
From the above analysis, we can conclude that by prop-

erly selecting samples and assigning weights, better approx-
imation to the ground truth matrix Y can be attained by
weighted L2-norm MF, compared with the un-weighted ver-
sion. Since the underlying {e2

ij} is unknown in practice, we
cannot guarantee to select samples and assign weights in an
exactly correct way. However, we can still estimate {e2

ij}
with losses evaluated by current approximation, which is ex-
actly what SPMF does. Besides, by iteratively selecting and
re-weighting samples, this estimation is expected to be grad-
ually more accurate. This thus provides a rational explana-
tion for the effectiveness of SPMF.

Experiments
We evaluate the performance of the proposed SPMF ap-
proach, denoted as SPMF-L2 (L2-reg), SPMF-L2 (trace-
reg), SPMF-L1 (L2-reg) and SPMF-L1 (trace-reg) for L2-
and L1-norm MF with L2- and trace-norm regularization,
respectively, on synthetic, structure from motion and back-
ground subtraction data. The competing methods include
representative MF methods designed for handling miss-
ing data: DWiberg (Okatani, Yoshida, and Deguchi 2011),
RegL1ALM (Zheng et al. 2012), PRMF (Wang et al. 2012),
CWM (Meng et al. 2013), and a recently proposed MoG



Table 1: Performance comparison of 11 competing MF methods in terms of RMSE and MAE on synthetic data. The results are
averaged over 50 runs, and the best and the second best results are highlighted in bold with and without underline, respectively.

Method
L2-ALM
(L2-reg)

L2-ALM
(trace-reg)

DWiberg RegL1ALM PRMF CWM MoG
SPMF-L2

(L2-reg)
SPMF-L2

(trace-reg)
SPMF-L1

(L2-reg)
SPMF-L1

(trace-reg)
RMSE 3.7520 3.8460 4.3658 0.1412 0.2688 0.1359 0.1622 0.1152 0.1119 0.0632 0.0636
MAE 2.7147 2.7522 2.8224 0.0761 0.1768 0.0890 0.0634 0.0714 0.0688 0.0481 0.0487

20 40 60

1

3

5

Iteration

R
M

SE

20 40 60

0.5

1.5

2.5

Iteration

M
AE

10 20 30 40

0.08

0.12

0.16

0.2

Iteration

R
M

SE

10 20 30 40

0.06

0.1

0.14

Iteration

M
AE

PRMF
(L2−reg)
SPMF−L1−hard
(L2−reg)
SPMF−L1−soft
(L2−reg)
RegL1ALM
(trace−reg)
SPMF−L1−hard
(trace−reg)
SPMF−L1−soft
(trace−reg)

L2-ALM
(L2−reg)
SPMF−L2−hard
(L2−reg)
SPMF−L2−soft
(L2−reg)
L2-ALM
(trace−reg)
SPMF−L2−hard
(trace−reg)
SPMF−L2−soft
(trace−reg)

Figure 2: Tendency curves of RMSE and MAE with respect
to iterations for SPMF-L2 (top) and SPMF-L1 (bottom).

method (Meng and De la Torre 2013). We used the publicly
available codes from the authors’ websites except MoG pro-
vided by the authors.

Synthetic Data
The data were generated as follows: two matrices U and
V, both of which are of size 100 × 4, were first randomly
generated with each entry drawn from the Gaussian dis-
tribution N (0, 1), leading to a ground truth rank-4 matrix
Y0 = UVT . Then 40% of the entries were designed as
missing data, 20% of the entries were added to uniform noise
on [−20, 20], and the rest entries were added to Gaussian
noise drawn from N (0, 0.12).

The experiments were implemented with 50 realizations.
For each realization, we ran each method, except SPMF
methods, 80 times with randomly initializations and pick
the best output in terms of the objective function. This is
aimed to heuristically alleviate the bad local minimum is-
sue of the conventionally MF methods with similar compu-
tational cost as SPMF (80 is larger than the number of sub-
problems solved in SPMF). Two criteria were adopted for
performance assessment. (1) RMSE: 1√

mn
‖Y0 − ÛV̂T ‖F ,

and (2) mean absolute error (MAE): 1
mn‖Y0 − ÛV̂T ‖1,

where Û, V̂ denote the outputs from a utilized MF method.
The performance of each competing method was evaluated
in terms of these two criteria, as the average over the 50 re-
alizations, and reported in Table 1.

As can be seen from Table 1, for both regularization
terms, SPMF-L1 achieves the best performance among all
the competing methods. It can also be observed that, al-
though based on the LS loss, SPMF-L2 outperforms the uti-
lized robust MF methods. This shows that, by the proposed
strategy, L2-norm MF can be more robust against outliers.

To better understand the behavior of the proposed self-

paced regularizer, we plot in Figure 2 the curves of RMSE
and MAE with respect to SPL iterations using both the
hard and soft self-paced regularizers. We also show the per-
formance of the baseline methods, i.e., L2-ALM (L2-reg),
L2-ALM (trace-reg), PRMF and RegL1ALM, for easy com-
parison. The figure shows that, by iteratively selecting sam-
ples and assigning weights, both of the two regularizers can
improve the baseline in the first several iterations. When the
iteration continues, the performance of the hard regularizer
gradually degenerates, while the estimation by the soft regu-
larizer consistently becomes more accurate. This shows that
the utilized soft regularizer is more stable than the hard reg-
ularizer. Similar behavior was also observed in the experi-
ments on real data, and thus we only report the results of the
proposed soft regularizer in what follows.

Structure From Motion
Structure from motion (SFM) aims to estimate 3-D struc-
ture from a sequence of 2-D images which are coupled with
local motion information. There are two types of SFM prob-
lems, namely rigid and nonrigid SFM, both of which can
be formulated as MF problems. For rigid SFM, we employ
the Dinosaur sequence1 which contains 319 feature points
tracked over 36 views, corresponding to a matrix Y0 of size
72 × 319 with 76.92% missing entries. We added uniform
noise on [−50, 50] to 10% randomly chosen observed entries
to simulate outliers. For nonrigid SFM, we use the Giraffe
sequence2, which includes 166 feature points tracked over
120 frames. The data matrix Y0 is of size 240 × 166 with
30.24% missing entries. 10% of the elements were randomly
chosen and added to outliers, generated from uniform distri-
bution on [−30, 30]. Following the papers by Ke and Kanade
(2005) and Buchanan and Fitzgibbon (2005), the rank was
set to 4 and 6 for rigid and nonrigid SFM, respectively.

The performance in terms of RMSE and MAE3 averaged
over 20 runs are reported in Table 2. Similar as before, the
output of each method, except SPMF methods, was chosen
from 80 runs with random initializations by evaluating the
objective function. It can be seen that, most of the competing
methods are negatively affected by the outliers embedded in
data, while our methods can still achieve reasonable approx-
imations. Specifically, the performance of an MF method
can be significantly improved using the SPL strategy. For
example, the averaged RMSE of the Dinosaur sequence by
PRMF, using LAD loss and L2 regularization, is decreased
from 13.205 to 3.0757 by SPMF-L1 (L2-reg). Besides, the

1http://www.robots.ox.ac.uk/˜abm/.
2http://www.robots.ox.ac.uk/˜abm/.
3Since the full ground truth matrix is unavailable, the RMSE

and MAE were evaluated on the observed data.



Table 2: Performance comparison of 11 competing MF
methods in terms of RMSE and MAE on SFM data. The re-
sults are averaged over 20 runs, and the best and the second
best results are highlighted in bold with and without under-
line, respectively.

Method
Dinosaur Giraffe

RMSE MAE RMSE MAE
L2-ALM (L2-reg) 5.4324 3.6165 1.7450 1.2768

L2-ALM (trace-reg) 5.3229 3.5916 0.7115 0.2931
DWiberg 5.4532 3.5962 2.0679 1.3566

RegL1ALM 3.8744 1.4706 0.7278 0.2929
PRMF 13.205 6.2341 0.7293 0.3749
CWM 11.114 5.1563 0.7738 0.3888
MoG 5.8979 3.6975 1.6845 1.2041

SPMF-L2 (L2-reg) 1.9817 0.5310 1.4511 0.6650
SPMF-L2 (trace-reg) 2.8630 1.0125 0.5547 0.3576
SPMF-L1 (L2-reg) 3.0757 0.9810 0.4872 0.2514

SPMF-L1 (trace-reg) 2.2275 0.4714 0.6379 0.2748

L2-ALM (L2-reg) DWiberg

RegL1ALM PRMF CWM MoG

SPMF-L2 (L2-reg) SPMF-L1 (trace-reg)

L2-ALM (trace-reg)

SPMF-L2 (trace-reg) SPMF-L1 (L2-reg)

Figure 3: Recovered tracks from the Dinosaur sequence of
11 competing methods.

best performance, in terms of either RMSE or MAE, can al-
ways be achieved by the proposed methods.

We also depict typical recovered tracks of the Dinosaur
sequence in Figure 3 to visualize the results. It can be ob-
served that our methods can recover the tracks with high
quality, while other methods produced comparatively more
disordered results. This further substantiates the effective-
ness of the proposed methods.

Background Subtraction
The background subtraction from a video sequence cap-
tured by a static camera can be modeled as a low-rank ma-
trix analysis problem (Wright et al. 2009). Four video se-
quences provided by Li et al. (2004)4 were adopted in our
evaluation, including two indoor scenes (Curtain and Esca-
lator) and two outdoor scenes (Fountain and WaterSurface).
Ground truth foreground regions of 20 frames were provided
for each sequence. Thus we can quantitatively compare the
subtraction results using the S-measure5 (Li et al. 2004) on

4http://perception.i2r.a-star.edu.sg/bk_
model/bk_index

5Defined as S(A,B) = A∩B
A∪B , where A denotes the detected

region and B is the corresponding ground truth region.

Table 3: Quantitative comparison of the background results
by 9 competing MF methods in terms of the S-measure. The
best results are highlighted in bold.

Method Curtain Escalator Fountain WaterSurface
SVD 0.4774 0.2823 0.5170 0.2561

RegL1ALM 0.5187 0.3803 0.6296 0.2104
PRMF 0.5179 0.5581 0.7562 0.3080
CWM 0.5039 0.3877 0.7491 0.2581
MoG 0.4983 0.0531 0.5245 0.2498

SPMF-L2 (L2-reg) 0.4811 0.2908 0.5368 0.2611
SPMF-L2 (trace-reg) 0.7694 0.4006 0.6480 0.5314
SPMF-L1 (L2-reg) 0.8176 0.6049 0.7659 0.7950

SPMF-L1 (trace-reg) 0.6370 0.4084 0.6681 0.2694

Original Ground truth Background Detected regionForeground

Figure 4: Background subtraction results of SPMF-L1

(L2-reg) on sample frames.

these frames. To do this, we first ran an MF method on
the sequence with rank-6 factorization to estimate the back-
ground. Then we applied the Markov random filed (MRF)
model (Li and Singh 2009) to the absolute values of the
difference between the original frame and the estimated
background. This procedure can label each pixel as either
foreground or background. The related optimization was
solved using the well known Graph Cut method (Boykov,
Veksler, and Zabih 2001; Kolmogorov and Zabin 2004;
Boykov and Kolmogorov 2004).

We compared our methods with singular value decompo-
sition (SVD), RegL1ALM, PRMF, CWM and MoG. We em-
ployed SVD as the representative of the L2-norm MF meth-
ods, since it is theoretically optimal for the matrix without
missing entries under the LS loss. The results are summa-
rized in Table 3. It can be seen that, the proposed SPMF-L1

(L2-reg) achieves the best performance for all the four se-
quences, especially the WaterSurface sequence.

We also show in Figure 4 the visual results of SPMF-L1

(L2-reg) on some sample frames. It can be observed that, our
method can reasonably separate the background and fore-
ground, and faithfully detect the foreground region.

Conclusion
We proposed a new MF framework by incorporating the SPL
methodology with traditional MF methods. This SPL man-
ner evidently alleviates the bad local minimum issue of MF
methods, especially in the presence of outliers and missing



data. The effectiveness of our method for L2- and L1-norm
MF was demonstrated by experiments on synthetic, struc-
ture from motion and background subtraction data. The pro-
posed method shows its advantage over current MF methods
on more accurately approximating the ground truth matrix
from corrupted data.
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